As we already know, to evaluate numerical expressions with a mix of different operations, we must follow the order of operations known as PEMDAS.

The same rules apply to numerical expressions with negative numbers. For example, let's compute the value of \left( -5 + 7 \right) \div (-2) \times 6.

First, we perform the operation inside the parentheses:

\begin{align*} \left( {\color{blue}-5} + {\color{blue}7} \right) \div (-2) \times 6 &= \\[3pt] {\color{blue}2} \div (-2) \times 6 \end{align*}

Now recall that if both multiplication and division appear in an expression, we complete each operation from left to right (similarly for addition and subtraction). So, we first divide:

\begin{align*} {\color{red}2} \div ({\color{red}-2}) \times 6 &= \\[3pt] {\color{red}-1} \times 6 \end{align*}

Then finally, we multiply:

\begin{align*} -1 \times 6 &= -6 \end{align*}

FLAG

Evaluate -7 + 3.1 - 5.

EXPLANATION

To evaluate this expression, we use PEMDAS.

We add and subtract, from left to right:

\begin{align*} -7 + 3.1 - 5 &= \\[3pt] ({\color{blue}-7} + {\color{blue}3.1}) - 5 &= \\[3pt] {\color{blue}-\,3.9} - 5 &= \\[3pt] -8.9 \end{align*}

FLAG

Evaluate $2 + 5.2 - 3.$

a
$3.2$
b
$6.9$
c
$4.2$
d
$2.9$
e
$5.2$

$3 - \dfrac 5 4 - 1=$

a
$\dfrac 3 4$
b
$\dfrac 1 2$
c
$-\dfrac 3 4$
d
$-\dfrac{11}4$
e
$\dfrac 1 4$

$\dfrac 3 4 + 2 - \dfrac 3 2 =$

a
$4$
b
$2$
c
$\dfrac{17}{4}$
d
$\dfrac 5 4$
e
$\dfrac 3 4$

What is the value of 2 \div 6 \times (-5)?

EXPLANATION

To evaluate this expression, we use PEMDAS.

We divide and multiply, from left to right:

\begin{align*} 2 \div 6 \times (-5) &= \\[5pt] ({\color{blue}2} \div {\color{blue}6}) \times (-5) &= \\[5pt] {\color{blue}\dfrac{2}{6}} \times (-5) &= \\[5pt] %\dfrac{2 \div 2}{6 \div 2} \times (-5) &= \\[5pt] \dfrac{1}{3} \times (-5) &= \\[5pt] \dfrac{1}{3} \times \dfrac{(-5)}{1} &= \\[5pt] \dfrac{1 \times (-5)}{3 \times 1} &= \\[5pt] -\dfrac{5}{3} \end{align*}

FLAG

$\dfrac 1 2\times 6 \div 5=$

a
$0.3$
b
$1.6$
c
$0.6$
d
$5$
e
$3$

$3\div 6 \times 2=$

a
$\dfrac 1 4$
b
$6$
c
$1$
d
$\dfrac 1 2$
e
$\dfrac 1 6$

$5\times \left(-\dfrac 3 2\right) \div 9 =$

a
$-\dfrac{135}{2}$
b
$-\dfrac{5}{6}$
c
$-\dfrac{2}{135}$
d
$-\dfrac{7}{9}$
e
$-\dfrac{5}{3}$

Evaluate -2 + 6 \div (-10).

EXPLANATION

To evaluate this expression, we use PEMDAS.

First, we divide:

\begin{align*} -2 + 6 \div (-10) &= \\[3pt] -2 + \left({\color{blue}6} \div ({\color{blue}-10})\right) &= \\[3pt] -2 + \left({\color{blue}-0.6}\right) \end{align*}

Finally, we add:

\begin{align*} -2 + \left(-0.6\right) &= -2.6 \end{align*}

FLAG

$\dfrac 1 4 \times 8 - 3.1=$

a
$1.1$
b
$0.9$
c
$-0.9$
d
$-1.1$
e
$1.2$

$(-3) \div \dfrac 3 5 + 2=$

a
$7$
b
$-\dfrac{11}{3}$
c
$-5$
d
$\dfrac 1 5$
e
$-3$

$1.5 - 3 \times (-2)=$

a
$7.5$
b
$-4.5$
c
$6.5$
d
$4.5$
e
$-7.5$

What is the value of \left( -3 + 6 \right) \div \dfrac{4}{3} - \dfrac{1}{4}?

EXPLANATION

To evaluate this expression, we use PEMDAS.

First, we perform the operation inside the parentheses:

\begin{align*} \left( {\color{red}-3} + {\color{red}6} \right) \div \dfrac{4}{3} - \dfrac{1}{4} &= \\[5pt] {\color{red}3} \div \dfrac{4}{3} - \dfrac{1}{4} \\[5pt] \end{align*}

Next, we divide:

\begin{align*} 3 \div \dfrac{4}{3} - \dfrac{1}{4} &= \\[5pt] \left({\color{blue}3} \div {\color{blue}\dfrac{4}{3}} \right) - \dfrac{1}{4} &= \\[5pt] \left(\dfrac{3}{1} \div \dfrac{4}{3} \right) - \dfrac{1}{4} &= \\[5pt] \left(\dfrac{3}{1} \times \dfrac{3}{4} \right) - \dfrac{1}{4} &= \\[5pt] \dfrac{3 \times 3}{1 \times 4} - \dfrac{1}{4} &= \\[5pt] {\color{blue}\dfrac{9}{4}} - \dfrac{1}{4} \end{align*}

Finally, we subtract:

\begin{align*} \dfrac{9}{4} - \dfrac{1}{4} &= \\[4pt] \dfrac{9-1}{4} &= \\[4pt] \dfrac{8}{4} &= \\[4pt] 8 \div 4 &= \\[4pt] 2 \end{align*}

FLAG

What is the value of $\left( 10 - 5 \right) \times \dfrac{1}{2}?$

a
$\dfrac{15}{2}$
b
$\dfrac{1}{10}$
c
$\dfrac 5 2$
d
$5$
e
$10$

What is the value of $\left( -3 \right) \times (0.6-0.3)?$

a
$-2.7$
b
$-0.9$
c
$2.7$
d
$0.9$
e
$-1.8$

What is the value of $(-9+10)\div \left( 7 - 3 \right)?$

a
$0.5$
b
$1$
c
$0.25$
d
$0.2$
e
$\dfrac 1 3$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL