As we already know, to evaluate numerical expressions with a mix of different operations, we must follow the order of operations known as PEMDAS.
The same rules apply to numerical expressions with negative numbers. For example, let's compute the value of
First, we perform the operation inside the parentheses:
Now recall that if both multiplication and division appear in an expression, we complete each operation from left to right (similarly for addition and subtraction). So, we first divide:
Then finally, we multiply:
Evaluate
To evaluate this expression, we use PEMDAS.
We add and subtract, from left to right:
Evaluate $2 + 5.2 - 3.$
a
|
$3.2$ |
b
|
$6.9$ |
c
|
$4.2$ |
d
|
$2.9$ |
e
|
$5.2$ |
$3 - \dfrac 5 4 - 1=$
a
|
$\dfrac 3 4$ |
b
|
$\dfrac 1 2$ |
c
|
$-\dfrac 3 4$ |
d
|
$-\dfrac{11}4$ |
e
|
$\dfrac 1 4$ |
$\dfrac 3 4 + 2 - \dfrac 3 2 =$
a
|
$4$ |
b
|
$2$ |
c
|
$\dfrac{17}{4}$ |
d
|
$\dfrac 5 4$ |
e
|
$\dfrac 3 4$ |
What is the value of
To evaluate this expression, we use PEMDAS.
We divide and multiply, from left to right:
$\dfrac 1 2\times 6 \div 5=$
a
|
$0.3$ |
b
|
$1.6$ |
c
|
$0.6$ |
d
|
$5$ |
e
|
$3$ |
$3\div 6 \times 2=$
a
|
$\dfrac 1 4$ |
b
|
$6$ |
c
|
$1$ |
d
|
$\dfrac 1 2$ |
e
|
$\dfrac 1 6$ |
$5\times \left(-\dfrac 3 2\right) \div 9 =$
a
|
$-\dfrac{135}{2}$ |
b
|
$-\dfrac{5}{6}$ |
c
|
$-\dfrac{2}{135}$ |
d
|
$-\dfrac{7}{9}$ |
e
|
$-\dfrac{5}{3}$ |
Evaluate
To evaluate this expression, we use PEMDAS.
First, we divide:
Finally, we add:
$\dfrac 1 4 \times 8 - 3.1=$
a
|
$1.1$ |
b
|
$0.9$ |
c
|
$-0.9$ |
d
|
$-1.1$ |
e
|
$1.2$ |
$(-3) \div \dfrac 3 5 + 2=$
a
|
$7$ |
b
|
$-\dfrac{11}{3}$ |
c
|
$-5$ |
d
|
$\dfrac 1 5$ |
e
|
$-3$ |
$1.5 - 3 \times (-2)=$
a
|
$7.5$ |
b
|
$-4.5$ |
c
|
$6.5$ |
d
|
$4.5$ |
e
|
$-7.5$ |
What is the value of
To evaluate this expression, we use PEMDAS.
First, we perform the operation inside the parentheses:
Next, we divide:
Finally, we subtract:
What is the value of $\left( 10 - 5 \right) \times \dfrac{1}{2}?$
a
|
$\dfrac{15}{2}$ |
b
|
$\dfrac{1}{10}$ |
c
|
$\dfrac 5 2$ |
d
|
$5$ |
e
|
$10$ |
What is the value of $\left( -3 \right) \times (0.6-0.3)?$
a
|
$-2.7$ |
b
|
$-0.9$ |
c
|
$2.7$ |
d
|
$0.9$ |
e
|
$-1.8$ |
What is the value of $(-9+10)\div \left( 7 - 3 \right)?$
a
|
$0.5$ |
b
|
$1$ |
c
|
$0.25$ |
d
|
$0.2$ |
e
|
$\dfrac 1 3$ |