Subtracting a negative number is the same as adding a positive number. To remember this, just think that whenever you see a minus ( - ) sign followed by a negative ( - ) sign, they combine into a single plus (+) sign, like so: \text{ [math]{\color{red}\,\mathbf{-}\,}({\color{red}\,\mathbf{-}\,}4)[/math] becomes [math]{\color{blue}\,\mathbf{+}\,}4[/math]. }

A minus sign followed by a negative sign can be hard to make out, so it's considered better form to place parentheses around the negative number. For example, 9-(-4) is the same thing as 9 + 4. This gives

\begin{align*} 9 \,\overbrace{\bbox[pink, 2pt]{-}\,(\bbox[pink, 2pt]{-}}^{\bbox[SkyBlue, 3pt]{\mathbf{+}}}\,4) &= \\ 9 \mathbf{\color{blue}\,+\,} 4 &= \\ 13&. \end{align*}

Similarly, \eqalign{ - 16 -(-5) &= - 16 + 5. } To compute the result of adding 5 to -16, we start at -16 and move 5 places to the right:

When we do this, we land at -11 . Therefore, -16-(-5)=-16+5=-11.

FLAG

Calculate the value of 0-(-6).

EXPLANATION

To subtract -6 from 0, we combine the two negative signs to make a single plus sign. This gives

\begin{align*} 0-(-6)&= \\[5pt] 0+6 &= \\[5pt] 6&. \end{align*}

FLAG

$4-(-4)=$

a
$-8$
b
$8$
c
$16$
d
$0$
e
$-16$

$5-(-30)=$

a
$35$
b
$25$
c
$-35$
d
$-150$
e
$-25$

Subtract -100 from -85 .

EXPLANATION

To subtract −100 from -85, we combine the two negative signs to make a single plus sign. This gives \begin{align*} −85 − (−100) &= \\[5pt] −85 + 100 &= \\[5pt] 15&. \end{align*}

FLAG

$-5-(-5)=$

a
$0$
b
$-5$
c
$-10$
d
$10$
e
$5$

$-45-(-25)=$

a
$20$
b
$70$
c
$60$
d
$-20$
e
$-70$

What is the value of -3-(-1.5) ?

EXPLANATION

To subtract -1.5 from -3, we combine the two negative signs to make a single plus sign. This gives

\begin{align*} -3-(-1.5) = -3+1.5. \end{align*}

To calculate -3+1.5, we start at -3 and move 1 place to the right. Then, we move another 0.5 places to the right:

Therefore, -3-(-1.5)= -1.5.

FLAG

$5-(-3.5)=$

a
$2.5$
b
$-1.5$
c
$8.5$
d
$7.5$
e
$1.5$

$3.5-(-4.5)=$

a
$-7$
b
$-1.6$
c
$8$
d
$1.5$
e
$7$

Find \dfrac{3}{7} - \left( -\dfrac{11}{7} \right).

EXPLANATION

To subtract -\dfrac{11}{7} from \dfrac{3}{7}, we combine the two negative signs to make a single plus sign. This gives \begin{align*} \dfrac{3}{7} - \left( -\dfrac{11}{7} \right) &= \dfrac{3}{7} + \dfrac{11}{7}. \end{align*}

We have a common denominator of 7, so we combine numerators: \begin{align*} \dfrac{3}{7} + \dfrac{11}{7} = \dfrac{3+11}{7} = \dfrac{14}{7} \end{align*}

Now, we can simplify the resulting fraction: \begin{align*} \require{cancel} \dfrac{14}{7} &= 14 \div 7 = 2 \end{align*}

Note: If two fractions have different denominators, we need to put them over a common denominator first and then add or subtract!

FLAG

$-\dfrac{2}{5}-\left(-\dfrac{6}{5}\right)=$

a
$\dfrac{4}{5}$
b
$-\dfrac{12}{5}$
c
$\dfrac{8}{5}$
d
$-\dfrac{1}{3}$
e
$-\dfrac{8}{5}$

$\dfrac{1}{6}-\left(-\dfrac{2}{3}\right)=$

a
$\dfrac{5}{6}$
b
$-\dfrac{4}{3}$
c
$\dfrac{1}{3}$
d
$\dfrac{4}{3}$
e
$\dfrac{1}{9}$

Lastly, let's recap the rules for dealing with pluses and minuses if they follow each other:

  • \mathbf{\color{blue}+} \: (\mathbf{\color{red}-}) = \mathbf{\color{red}-} \quad [ plus followed by minus becomes minus ]

  • \mathbf{\color{red}-} \: (\mathbf{\color{blue}+}) = \mathbf{\color{red}-} \quad [ minus followed by plus becomes minus ]

  • \mathbf{\color{blue}+} \: (\mathbf{\color{blue}+}) = \mathbf{\color{blue}+} \quad [ plus followed by plus becomes plus ]

  • \mathbf{\color{red}-} \: (\mathbf{\color{red}-}) = \mathbf{\color{blue}+} \quad [ minus followed by minus becomes plus ]

FLAG
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL