We can use the standard algorithm to multiply two-digit numbers.
To illustrate, let's use the standard algorithm to compute
12\times 13.
Recall that
{\color{blue}1}{\color{red}3}
in expanded form is
{\color{blue}10} + {\color{red}3}.
The idea is to first multiply
12
by
{\color{red}3},
then by
{\color{blue}10},
and add the results.
We write one number above the other as follows:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\hline
&
\end{array}
&\qquad\qquad&
\phantom{36 + 120 = {\color{red}156}}
\end{align*}
First, we multiply the top number (
12
) by the value in the ones place of the second number (
\bbox[2px, lightgray]{3}
), writing the result under the line:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!\!\bbox[2px, lightgray]{3}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
12 \times \bbox[2px, lightgray]{3} = {\color{red}36}\phantom{000}
\end{array}
\end{align*}
Next, we multiply
12
by
\bbox[2px, lightgray]{1}0.
Let's do this in steps:
Step 1 : Any number multiplied by
10
always gives a zero at the end. Therefore, we place a zero in the ones column underneath our first result.
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\phantom{12 \times \bbox[2px, lightgray]{1}0 = {\color{red}120}\phantom{0}}
\end{array}
\end{align*}
Step 2 : Now, we work out
\bbox[2px, lightgray]{2}\times \bbox[2px, lightgray]{1}.
We place the answer next to our zero:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{1} = {\color{red}2}\phantom{0}
\end{array}
\end{align*}
Step 3 : Next, we we work out
\bbox[2px, lightgray]{1}\times \bbox[2px, lightgray]{1}
:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{1} \times \bbox[2px, lightgray]{1} = {\color{red}1}\phantom{0}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
36 + 120 = {\color{red} 156}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
12 \times 13 = 156.
What is
23
multiplied by
22?
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
&
\end{array}
&\qquad\qquad&
\phantom{46 + 460 = {\color{red}506}}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\!\bbox[2px, lightgray]{2}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
23 \times \bbox[2px, lightgray]{2} = {\color{red}46}\phantom{000}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
23 \times \bbox[2px, lightgray]{2}0 = {\color{red}460}\phantom{0}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
46 + 460 = {\color{red} 506}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
23 \times 22 = 506.
a
$641$
b
$651$
c
$631$
d
$661$
e
$671$
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!3\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\!3\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{1}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
31 \times \bbox[2px, lightgray]{1} = {\color{red}31}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!1\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
31 \times \bbox[2px, lightgray]{2}0 = {\color{red}620}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
31 + 620 = {\color{red} 651}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $31 \times 21 = 651.$
a
$288$
b
$286$
c
$274$
d
$276$
e
$282$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{2}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
13 \times \bbox[2px, lightgray]{2} = {\color{red}26}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
13 \times \bbox[2px, lightgray]{2}0 = {\color{red}260}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}8\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
26 + 260 = {\color{red} 286}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $13 \times 22 = 286.$
Just like when multiplying a number by a one-digit number, we will sometimes have carries. Let's see how to deal with this by multiplying
24
by
32.
We write it this way:
\begin{align*}
\quad\quad
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!4\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
&
\end{array}
&\qquad\qquad&
\phantom{48 + 720 = {\color{red}768}}
\end{align*}
First, we multiply the ones:
\begin{align*}
\quad\quad
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\! \color{lightgray} \substack{ \phantom{0} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\! & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!4\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!\!\bbox[2px, lightgray]{2}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}8\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
24 \times \bbox[2px, lightgray]{2} = {\color{red}48}\phantom{000}
\end{array}
\end{align*}
On this occasion, there were no carries when multiplying the ones, and so the carry box
\color{lightgray} \fbox{[math]\color{blue}\phantom{0}[/math]}
remains empty.
Next, we multiply the tens. Let's do this in steps.
Step 1 : We start by writing a zero:
\begin{align*}
\quad\quad
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\! \color{lightgray} \substack{ \phantom{0} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!8\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\phantom{24 \times \bbox[2px, lightgray]{3}0 = {\color{red}720}\phantom{0}}
\end{array}
\end{align*}
Step 2 : We now work out
\bbox[2px, lightgray]{4}\times \bbox[2px, lightgray]{3} = {\color{blue}1}{\color{red}2}.
We carry the
{\color{blue}1}
and write down
\color{red}2
:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!8\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{4} \times \bbox[2px, lightgray]{3} = 12\\
\textrm{Carry:}\, {\color{blue}{1}}\\
\textrm{Write:}\, {\color{red}{2}}\\
\end{array}
\end{align*}
Step 3 : We multiply
\bbox[2px, lightgray]{2}\times \bbox[2px, lightgray]{3} = 6,
and we add the carry from the previous multiplication to make
6+{\color{blue}{1}} = {\color{red}{7}}.
\begin{align*}
\quad\quad\quad\quad\quad\quad\quad
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\! & \\
& & & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!8\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{3} = 6\quad \textrm{and}\quad 6+{\color{blue}{1}} = {\color{red}{7}}\\
\textrm{Carry:}\, -\\
\textrm{Write:}\, {\color{red}{7}}\\
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
\quad
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!8\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!7\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}8\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
48 + 720 = {\color{red} 768}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
24 \times 32 = 768.
As seen before, we start by writing one number on top of the other:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!4\!\!\!\! & \!\!\!\!7\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!5\!\!\!\! \\
\hline
&
\end{array}
&\qquad\qquad&
\phantom{00000000000000000}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\!\!\! \color{lightgray} \substack{ \\[2pt] \fbox{[math]\color{blue}3[/math]} } \!\!\!\! & \\
& & & \!\!\!\!4\!\!\!\! & \!\!\!\!7\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!\!\bbox[2px, lightgray]{5}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
47 \times \bbox[2px, lightgray]{5} = {\color{red}235}\phantom{00000}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}2[/math]} \\[2pt] \fbox{[math]\color{blue}3[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!5\!\!\!\! \\
& \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
47 \times \bbox[2px, lightgray]{3}0 = {\color{red}1,410}\phantom{00}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}2[/math]} \\[2pt] \fbox{[math]\color{blue}3[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!5\!\!\!\! \\
\hline
& & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!5\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
235 + 1410 = {\color{red}1 , 645}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
47 \times 35 = 1 , 645.
What is $43$ multiplied by $49?$
a
$3,007$
b
$2,107$
c
$2,897$
d
$1,997$
e
$2,477$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!4\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!9\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\!4\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{9}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}8\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
43 \times \bbox[2px, lightgray]{9} = {\color{red}387}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}1$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! & \!\!\!\! 9 \!\!\!\! \\
\hline
& & \!\!\!\!3\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!7\!\!\!\! \\
& \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
43 \times \bbox[2px, lightgray]{4}0 = {\color{red}1,720}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}1$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!9\!\!\!\! \\
\hline
& & \!\!\!\!3\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!7\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!7\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
387 + 1,720 = {\color{red}2 , 107}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $43 \times 49 = 2 , 107.$
Calculate $23 \times 27.$
a
$501$
b
$590$
c
$621$
d
$451$
e
$730$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!7\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\!2\!\!\!\! & \!\!\!\!3\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{7}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}1\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
23 \times \bbox[2px, lightgray]{7} = {\color{red}161}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}\phantom{0}$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\hline
& & \!\!\!\!1\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!1\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
23 \times \bbox[2px, lightgray]{2}0 = {\color{red}460}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}\phantom{0}$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!7\!\!\!\! \\
\hline
& & \!\!\!\!1\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!1\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}1\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
161 + 460 = {\color{red} 621}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $23 \times 27 = 621.$
Jessica runs
12
kilometers every morning. How many kilometers does Jessica run in
28
days?
To calculate the total number of kilometers that Jessica runs in
28
days, we need to multiply
12
by
28.
So, we write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!8\!\!\!\! \\
\hline
&
\end{array}
&\qquad\qquad&
\phantom{12 \times \bbox[2px, lightgray]{2}0 = {\color{red}240}}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\!\bbox[2px, lightgray]{8}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}9\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
12 \times \bbox[2px, lightgray]{8} = {\color{red}96} \phantom{000}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \fbox{[math]\color{blue}\phantom{0}[/math]} \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 8 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!9\!\!\!\! & \!\!\!\!6\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}4\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
12 \times \bbox[2px, lightgray]{2}0 = {\color{red}240} \phantom{0}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \!\!\color{lightgray} \substack{ \fbox{[math]\color{blue}\phantom{0}[/math]} \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!8\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!9\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}6\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
96 + 240 = {\color{red} 336}
\end{array}
\\[5pt]
&
\end{align*}
So,
12 \times 28 = 336.
Therefore, Jessica runs a total of
336
kilometers in
28
days.
There are $16$ teams participating in an international soccer competition. If there are $22$ players on each team, how many players are participating in the competition in total?
a
$320$
b
$280$
c
$352$
d
$510$
e
$420$
To calculate the total number of soccer players in the competition, we need to multiply $16$ by $22.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \\[2pt] \fbox{$\color{blue}1$} } \!\!\!\! & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!6\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{2}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
16 \times \bbox[2px, lightgray]{2} = {\color{red}32}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}1$} \\[2pt] \fbox{$\color{blue}1$} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!2\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
16 \times \bbox[2px, lightgray]{2}0 = {\color{red}320}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}1$} \\[2pt] \fbox{$\color{blue}1$} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!2\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
32 + 320 = {\color{red} 352}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $16 \times 22 = 352.$
Therefore, there are a total of $352$ soccer players in the competition.
In a particular section of a certain football stadium, there are $14$ rows with $25$ seats each. How many seats are there in the section in total?
a
$310$
b
$240$
c
$430$
d
$350$
e
$280$
To calculate the total number of seats in the section, we need to multiply $14$ by $25.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!4\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!5\!\!\!\! \\
\hline
& & & & &
\end{array}
\end{align*}
First, we multiply the ones:
\begin{align*}
&
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\!1\!\!\!\! & \!\!\!\!4\!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!\bbox[2px, lightgray]{5}\!\!\!\! \\
\hline
& & \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}7\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
14 \times \bbox[2px, lightgray]{5} = {\color{red}70}
\end{array}
\end{align*}
Next, we multiply the tens:
\begin{align*}
\require{cancel}
&
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}\phantom{0}$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!7\!\!\!\! & \!\!\!\!0\!\!\!\! \\
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}2\!\!\!\! & \!\!\!\!\color{red}8\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
14 \times \bbox[2px, lightgray]{2}0 = {\color{red}280}
\end{array}
\end{align*}
Finally, we add the results:
\begin{align*}
\require{cancel}
%%%%%%%%%%
%%% Step A %%%
%%%%%%%%%%
&
\begin{array}{ccccc}
& & & \!\!\!\! \color{lightgray} \substack{ \fbox{$\color{blue}\phantom{0}$} \\[2pt] \fbox{$\color{blue}2$} } \!\!\!\! & \\
& & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!5\!\!\!\! \\
\hline
& & \!\!\!\!\!\!\!\! & \!\!\!\!7\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!0\!\!\!\! \\
\hline
& \!\!\!\!\color{red}\!\!\!\! & \!\!\!\!\color{red}3\!\!\!\! & \!\!\!\!\color{red}5\!\!\!\! & \!\!\!\!\color{red}0\!\!\!\! \\
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
70 + 280 = {\color{red} 350}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $14 \times 25 = 350.$
Therefore, there are a total of $350$ seats in the section.
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL