We've seen how to use area models to multiply two-digit numbers. Let's now discuss a similar method that does not require models.

For example, let's consider the following multiplication problem:

13 \times 24

We begin by expressing both factors in expanded form:

\begin{align} 13 &= {\color{blue}{10}} + {\color{blue}{3}}, \qquad 24 = {\color{red}{20}} + {\color{red}{4}} \end{align}

Next, we multiply both numbers in the first factor's expanded form by both numbers in the second factor's expanded form:

  • First, we multiply {\color{blue}{10}} by {\color{red}{20}} and {\color{red}{4}} \mathbin{:} \begin{align} {\color{blue}{10}} \times {\color{red}{20}} &= 200\\[5pt] {\color{blue}{10}} \times {\color{red}{4}} &= 40 \end{align}

  • Then, we multiply {\color{blue}{3}} by {\color{red}{20}} and {\color{red}{4}} \mathbin{:} \begin{align} {\color{blue}{3}} \times {\color{red}{20}} &= 60 \\[5pt] {\color{blue}{3}} \times {\color{red}{4}} &= 12 \end{align}

Let's now add all our results:

\begin{array}{cccccccc} & \!\!\!\! {\small\color{blue}1} \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! \\ & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \end{array}

Therefore,

13 \times 24 = 312.

It's worth taking a moment to compare this computation to the corresponding area model.

Notice the following:

  • The intermediate products (200,40,60, and 12) we found during our calculation all correspond to the areas of small rectangles in the area model.

  • Summing these intermediate products corresponds to finding the area of the large rectangle by adding the areas of the small rectangles.

FLAG

Ann wishes to find the value of 36\times 19. She starts by writing both factors in expanded form.

36 = {\color{blue}{30}}+{\color{blue}{6}},\qquad 19 = {\color{red}{10}}+{\color{red}{9}}

Then, she proceeds as follows:

\begin{align*} {\color{blue}{30}}\times {\color{red}{10}} &= \fbox{[math]\phantom{000}[/math]}\\[5pt] {\color{blue}{30}}\times {\color{red}{9}} &= \fbox{[math]\phantom{000}[/math]}\\[5pt] {\color{blue}{6}}\times {\color{red}{10}} &= \fbox{[math]\phantom{10}[/math]}\\[5pt] {\color{blue}{6}}\times {\color{red}{9}} &= \fbox{[math]\phantom{10}[/math]}\\[5pt] \end{align*}

Find the missing numbers, and use your answers to find the value of 36\times 19.

EXPLANATION

We can compute 36\times 19 by filling in the missing numbers and adding the results. So, let's find the missing values:

\begin{align*} {\color{blue}{30}}\times {\color{red}{10}} &= \fbox{[math]\,300\,[/math]}\\[5pt] {\color{blue}{30}}\times {\color{red}{9}} &= \fbox{[math]\,270\,[/math]}\\[5pt] {\color{blue}{6}}\times {\color{red}{10}} &= \fbox{[math]\,60\,[/math]}\\[5pt] {\color{blue}{6}}\times {\color{red}{9}} &= \fbox{[math]\,54\,[/math]}\\[5pt] \end{align*}

Let's now add these results:

\begin{array}{cccccccc} & \!\!\!\! {\small\color{blue}1} \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \\ & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \end{array}

Therefore,

36\times 19 = 684.

FLAG

Anna wishes to find the value of $21\times 17.$ She starts by writing both factors in expanded form.

\[ 21 = {\color{blue}{20}}+{\color{blue}{1}},\qquad 17 = {\color{red}{10}}+{\color{red}{7}} \]

Then, she proceeds as follows:

\begin{align*} {\color{blue}{20}}\times {\color{red}{10}} &= \fbox{$\phantom{000}$}\\[5pt] {\color{blue}{20}}\times {\color{red}{7}} &= \fbox{$\phantom{000}$}\\[5pt] {\color{blue}{1}}\times {\color{red}{10}} &= \fbox{$\phantom{10}$}\\[5pt] {\color{blue}{1}}\times {\color{red}{7}} &= \fbox{$\phantom{10}$}\\[5pt] \end{align*}

Find the missing numbers, and use your answers to find the value of $21\times 17.$

a
$377$
b
$317$
c
$347$
d
$327$
e
$357$

Matthew wishes to find the value of $39\times 18.$ He starts by writing both factors in expanded form.

\[ 39 = {\color{blue}{30}}+{\color{blue}{9}},\qquad 18 = {\color{red}{10}}+{\color{red}{8}} \]

Then, he proceeds as follows:

\begin{align*} {\color{blue}{30}}\times {\color{red}{10}} &= \fbox{$\phantom{000}$}\\[5pt] {\color{blue}{30}}\times {\color{red}{8}} &= \fbox{$\phantom{000}$}\\[5pt] {\color{blue}{9}}\times {\color{red}{10}} &= \fbox{$\phantom{10}$}\\[5pt] {\color{blue}{9}}\times {\color{red}{8}} &= \fbox{$\phantom{10}$}\\[5pt] \end{align*}

Find the missing numbers, and use your answers to find the value of $39\times 18.$

a
$792$
b
$692$
c
$702$
d
$712$
e
$602$

What is the value of 83 \times 47?

EXPLANATION

First, let's write our factors in expanded form:

\begin{align} 83 &= {\color{blue}{80}} + {\color{blue}{3}}, \qquad 47 = {\color{red}{40}} + {\color{red}{7}} \end{align}

Next, we multiply both numbers in the first factor's expanded form by both numbers in the second factor's expanded form:

  • First, we multiply {\color{blue}{80}} by {\color{red}{40}} and {\color{red}{7}} \mathbin{:} \begin{align} {\color{blue}{80}} \times {\color{red}{40}} &= 3,200 \\[5pt] {\color{blue}{80}} \times {\color{red}{7}} &= 560 \end{align}

  • Then, we multiply {\color{blue}{3}} by {\color{red}{40}} and {\color{red}{7}} \mathbin{:} \begin{align} {\color{blue}{3}} \times {\color{red}{40}} &= 120 \\[5pt] {\color{blue}{3}} \times {\color{red}{7}} &= 21 \end{align}

Let's now add all our results:

\begin{array}{cccccccc} & \!\!\!\! \!\!\!\! & \!\!\!\! {\small\color{blue}1} \!\!\!\! & \!\!\!\! \!\!\!\! & \\ & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 5 \!\!\!\! & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\ \hline & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 9 \!\!\!\! & \!\!\!\! 0 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \end{array}

Therefore,

83 \times 47 = 3,901.

FLAG

$54 \times 37 =$

a
$1,898$
b
$1,878$
c
$1,998$
d
$1,988$
e
$1,978$

$14 \times 19 =$

a
$266$
b
$256$
c
$196$
d
$226$
e
$186$

A maximum of 68 people can enter a particular gym every hour. What is the maximum number of people that can enter the gym over a 36 -hour period?

EXPLANATION

To determine the maximum number of people, we need to compute the value of

68 \times 36.

First, let's write our factors in expanded form:

\begin{align} 68 &= {\color{blue}{60}} + {\color{blue}{8}} ,\qquad 36 = {\color{red}{30}} + {\color{red}{6}} \end{align}

Next, we multiply both numbers in the first factor's expanded form by both numbers in the second factor's expanded form:

  • First, we multiply {\color{blue}{60}} by {\color{red}{30}} and {\color{red}{6}} \mathbin{:} \begin{align} {\color{blue}{60}} \times {\color{red}{30}} &= 1,800 \\[5pt] {\color{blue}{60}} \times {\color{red}{6}} &= 360 \end{align}

  • Then, we multiply {\color{blue}{8}} by {\color{red}{30}} and {\color{red}{6}} \mathbin{:} \begin{align} {\color{blue}{8}} \times {\color{red}{30}} &= 240\\[5pt] {\color{blue}{8}} \times {\color{red}{6}} &= 48 \end{align}

Let's now add all our results:

\begin{array}{cccccccc} & \!\!\!\! {\small\color{blue}1} \!\!\!\! & \!\!\!\! {\small\color{blue}1} \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \\ & \!\!\!\! 1\!\!\!\!& \!\!\!\! 8 \!\!\!\! & \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\!& \!\!\!\! 3 \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\!& \!\!\!\! 2 \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\ \hline & \!\!\!\!2 \!\!\!\!& \!\!\!\! 4 \!\!\!\! & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 8 \!\!\!\! \end{array}

Therefore, the maximum number of people that can enter the gym is 2,448.

FLAG

Sarah spends $32$ hours per week at school. How many hours will she spend at school in $25$ weeks?

a
$805$ hours
b
$700$ hours
c
$790$ hours
d
$768$ hours
e
$800$ hours

A theater has $85$ seats. If a group performs a show every day for a $16$-day run and all seats are sold during this period, how many tickets did the theater sell?

a
$1,240$ tickets
b
$1,280$ tickets
c
$1,260$ tickets
d
$1,360$ tickets
e
$1,340$ tickets
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL