To multiply a two-digit number by a one-digit number, we can use the standard algorithm .
For example, to multiply
23
by
3,
we write the two-digit number above the one-digit number, lining up the place values:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 3 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&\qquad
\phantom{48 + 720 = {\color{red}768} 00000000}
\end{align*}
First, we multiply the ones, placing the answer in the ones column under the line:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}\phantom{0}}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\! \color{red}9 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{3} \times \bbox[2px, lightgray]{3} = 9\phantom{0000000000000000} \\
\text{Write:}\: {\color{red}9}
\end{array}
\end{align*}
Then, we multiply by the value in the tens place, putting the answer in the tens column under the line:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\! \underset{\color{blue}\phantom{0}}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! \\
\hline
& \!\!\!\! \color{red} \!\!\!\! & \!\!\! \color{red}6 \!\!\!\! & \!\!\! 9 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{3} = 6\phantom{0000000000000000}\\
\text{Write:}\: {\color{red}6}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
23 \times 3 = 69.
What is
4
multiplied by
21?
We write our multiplication this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 4 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&\qquad
\phantom{48 + 720 = {\color{red}768} 00000000}
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}\phantom{0}}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\! \color{red}4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{1} \times \bbox[2px, lightgray]{4} = 4\phantom{0000000000000000} \\
\text{Write:}\: {\color{red}4}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\! \underset{\color{blue}\phantom{0}}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& \!\!\!\! \color{red} \!\!\!\! & \!\!\! \color{red}8 \!\!\!\! & \!\!\! 4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{4} = 8\phantom{0000000000000000}\\
\text{Write:}\: {\color{red}8}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
21 \times 4 = 84.
a
$84$
b
$82$
c
$78$
d
$86$
e
$88$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 4 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 2 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{}{} \!\!\!\! & \\
& & \!\!\!\! 4 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{3} \times \bbox[2px, lightgray]{2} = 6 \\
\text{Write:}\: {\color{red}6}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}8 \!\!\!\! & \!\!\!\! 6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{4} \times \bbox[2px, lightgray]{2} = 8 \\
\text{Write:}\: {\color{red}8}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $43 \times 2 = 86.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 7 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 8 \!\!\!\! & \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}}{} \!\!\!\! & \\
& & \!\!\!\! 7 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{8} \!\!\!\! & \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{1} \times \bbox[2px, lightgray]{8} = 8 \\
%\text{Carry:}\: {\color{blue}} \\
\text{Write:}\: {\color{red}8}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{7} \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{8} \!\!\!\! & \\
\hline
& \!\!\!\! \color{red}5 \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\! & \!\!\!\! 8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{7} \times \bbox[2px, lightgray]{8} = 56 \\
%\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}56}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $71 \times 8= \bbox[3pt,Gainsboro]{\color{blue}568}.$
a
$386$
b
$286$
c
$366$
d
$376$
e
$316$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 6 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}}{} \!\!\!\! & \\
& & \!\!\!\! 6 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{1} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{1} \times \bbox[2px, lightgray]{6} = 6 \\
\text{Write:}\: {\color{red}6}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! & \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}3 \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\! & \!\!\!\! 6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{6} = 36 \\
\text{Write:}\: {\color{red}36}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $61 \times 6 = 366.$
Sometimes when multiplying the ones, the result is two digits long.
In this case, we write down the digit in the ones place, and we carry the digit in the tens place. We then add the carried digit to the result of the multiplication of the tens.
For example, let's multiply
26
by
6.
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 6 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&\qquad
\phantom{ 14 \quad\text{and}\quad {\color{blue}3} + 14 = 170000}
\end{align*}
First, we multiply the ones. We have
6\times6= {\color{blue}3}{\color{red}6}
, so we write the ones place value,
\color{red}6
, and carry the tens place value,
{\color{blue}3}\mathbin{:}
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{6} = 36\phantom{00000000000000000} \\
\text{Carry:}\: {\color{blue}3} \\
\text{Write:}\: {\color{red}6}
\end{array}
\end{align*}
Finally, we multiply the tens. We have
2\times 6 = 12
, to which we add the carry of
{\color{blue}3}\mathbin{:}
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}5 \!\!\!\! & \!\!\!\! 6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{6} = 12 \quad\text{and}\quad {\color{blue}3} + 12 = 15 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}15}
\end{array}
\\[5pt]
&
\end{align*}
When we reach the tens multiplication, we do not carry anything. Instead, we write down the complete result.
Therefore,
26 \times 6 = 156.
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 4 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\phantom{\bbox[2px, lightgray]{3} \times \bbox[2px, lightgray]{4} = 12 \quad\text{and}\quad {\color{blue}2} + 12 = 14}
\end{array}
\\[5pt]
&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}2}{} \!\!\!\! & \\
& & \!\!\!\! 3 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{7} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{7} \times \bbox[2px, lightgray]{4} = 28 \phantom{\quad\text{and}\quad {\color{blue}2} + 12 = 14}\\
\text{Carry:}\: {\color{blue}2} \\
\text{Write:}\: {\color{red}8}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}2}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}4 \!\!\!\! & \!\!\!\! 8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{3} \times \bbox[2px, lightgray]{4} = 12 \quad\text{and}\quad {\color{blue}2} + 12 = 14 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}14}
\end{array}
\\[5pt]
&
\end{align*}
Therefore,
37 \times 4 = 148.
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 2 \!\!\!\! & \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}1}{} \!\!\!\! & \\
& & \!\!\!\! 6 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{8} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{8} \times \bbox[2px, lightgray]{2} = 16 \\
\text{Carry:}\: {\color{blue}1} \\
\text{Write:}\: {\color{red}6}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}1}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! & \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}3 \!\!\!\! & \!\!\!\! 6 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{2} = 12 \quad\text{and}\quad {\color{blue}1} + 12 = 13 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}13}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $68 \times 2 = \bbox[3pt,Gainsboro]{\color{blue}136}.$
a
$10$
b
$75$
c
$105$
d
$100$
e
$125$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 4 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}2}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{5} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}0 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{5} \times \bbox[2px, lightgray]{4} = 20 \\
\text{Carry:}\: {\color{blue}2} \\
\text{Write:}\: {\color{red}0}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}2}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{4} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}0 \!\!\!\! & \!\!\!\! 0 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{4} = 8 \quad\text{and}\quad {\color{blue}2} + 8 = 10 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}10}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $25 \times 4 = 100.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 9 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}5}{} \!\!\!\! & \\
& & \!\!\!\! 3 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{9} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{9} = 54 \\
\text{Carry:}\: {\color{blue}5} \\
\text{Write:}\: {\color{red}4}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}5}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{3} \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{9} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}3 \!\!\!\! & \!\!\!\! \color{red}2 \!\!\!\! & \!\!\!\! 4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{3} \times \bbox[2px, lightgray]{9} = 27 \quad\text{and}\quad {\color{blue}5} + 27 = 32 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}32}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, $36 \times 9 = \bbox[3pt,Gainsboro]{\color{blue}324}.$
As part of a school assignment,
7
students in the same class must interview
25
people about their sports preferences. How many interviews will they need to conduct in total?
To calculate the total number of interviews, we need to multiply
25
by
7.
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 7 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&\qquad
\phantom{ 14 \quad\text{and}\quad {\color{blue}3} + 14 = 170000}
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{5} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{7} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}5 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{5} \times \bbox[2px, lightgray]{7} = 35\phantom{00000000000000000} \\
\text{Carry:}\: {\color{blue}3} \\
\text{Write:}\: {\color{red}5}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\!\! \bbox[2px, lightgray]{7} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}7 \!\!\!\! & \!\!\!\! 5 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{7} = 14 \quad\text{and}\quad {\color{blue}3} + 14 = 17 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}17}
\end{array}
\\[5pt]
&
\end{align*}
Therefore, there will be a total of
175
interviews.
Carla delivered $27$ candies to each one of her five friends. How many candies did Carla deliver in total?
a
$162$
b
$108$
c
$119$
d
$135$
e
$126$
To calculate the total number of candies, we need to multiply $27$ by $5.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 5 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{7} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{5} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}5 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{7} \times \bbox[2px, lightgray]{5} = 35 \\
\text{Carry:}\: {\color{blue}3} \\
\text{Write:}\: {\color{red}5}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}3}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{5} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}1 \!\!\!\! & \!\!\!\! \color{red}3 \!\!\!\! & \!\!\!\! 5 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{5} = 10 \quad\text{and}\quad {\color{blue}3} + 10 = 13 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}13}
\end{array}
\\[5pt]
&
\end{align*}
Hence, $27 \times 5 = 135.$
Therefore, Carla had a total of $135$ candies.
A box contains $8$ packs of pencils, each pack containing $26$ pencils. How many pencils are in the box in total?
To calculate the total number of pencils, we need to multiply $26$ by $8.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 8 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}4}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{8} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{8} = 48 \\
\text{Carry:}\: {\color{blue}4} \\
\text{Write:}\: {\color{red}8}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}4}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{8} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}2 \!\!\!\! & \!\!\!\! \color{red}0 \!\!\!\! & \!\!\!\! 8 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{8} = 16 \quad\text{and}\quad {\color{blue}4} + 16 = 20 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}20}
\end{array}
\\[5pt]
&
\end{align*}
Hence, $26 \times 8 = 208.$
Therefore, the box contains a total of $\bbox[3pt,Gainsboro]{\color{blue}208}$ pencils.
An office building has $26$ floors, each with $9$ offices. How many offices are in the building in total?
To calculate the total number of offices, we need to multiply $26$ by $9.$
We write it this way:
\begin{align*}
%%%%%%%%%%
%%% Step 0 %%%
%%%%%%%%%%
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! 9 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\! & \!\!\!\! \!\!\!\!
\end{array}
&\qquad\qquad&
\end{align*}
First, we multiply the ones:
\begin{align*}
%%%%%%%%%%
%%% Step 1 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}5}{} \!\!\!\! & \\
& & \!\!\!\! 2 \!\!\!\! & \!\!\!\! \bbox[2px, lightgray]{6} \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{9} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\! & \!\!\!\! \color{red}4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{6} \times \bbox[2px, lightgray]{9} = 54 \\
\text{Carry:}\: {\color{blue}5} \\
\text{Write:}\: {\color{red}4}
\end{array}
\end{align*}
Finally, we multiply the tens:
\begin{align*}
%%%%%%%%%%
%%% Step 2 %%%
%%%%%%%%%%
&
%%% Long Multiplication %%%
\begin{array}{ccccc}
& & \!\!\!\! \underset{\color{blue}5}{} \!\!\!\! & \\
& & \!\!\!\! \bbox[2px, lightgray]{2} \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!\times\!\!\!\! & & & \!\!\!\! \bbox[2px, lightgray]{9} \!\!\!\! \\
\hline
& \!\!\!\! \color{red}2 \!\!\!\! & \!\!\!\! \color{red}3 \!\!\!\! & \!\!\!\! 4 \!\!\!\!
\end{array}
&\qquad\qquad&
%%%% Explanations %%%
\begin{array}{l}
\bbox[2px, lightgray]{2} \times \bbox[2px, lightgray]{9} = 18 \quad\text{and}\quad {\color{blue}5} + 18 = 23 \\
\text{Carry:}\: {\color{blue}-} \\
\text{Write:}\: {\color{red}23}
\end{array}
\\[5pt]
&
\end{align*}
Hence, $26 \times 9 = 234.$
Therefore, the building contains a total of $\bbox[3pt,Gainsboro]{\color{blue}234}$ offices.
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL