As we already know, to evaluate numerical expressions with a mix of different operations, we must follow the order of operations (PEMDAS).
The same rules apply to numerical expressions with negative numbers. For example, let's compute the value of
To evaluate this expression, we use PEMDAS. First, we compute the exponents:
Then, we multiply:
Therefore,
Calculate .
To evaluate this expression, we use PEMDAS. First, we compute the exponents:
Then, we divide:
$\left(-3\right)^3+4^3=$
a
|
$55$ |
b
|
$81$ |
c
|
$3$ |
d
|
$15$ |
e
|
$37$ |
$6\div 3 + \left(-3\right)^3=$
a
|
|
b
|
|
c
|
|
d
|
|
e
|
Evaluate
To evaluate this expression, we use PEMDAS. First, we perform the operation inside the parentheses:
Next, we compute the exponents:
Finally, we multiply:
$\left(1-(-3)\right)^3=$
a
|
|
b
|
|
c
|
|
d
|
|
e
|
Evaluate $\left(-1-2\right)^3.$
a
|
$-9$ |
b
|
$-27$ |
c
|
$8$ |
d
|
$1$ |
e
|
$-1$ |
What is the value of
To evaluate this expression, we use PEMDAS. First, consider the expression inside the parenthesis:
Applying PEMDAS to this expression, we obtain:
Finally, we multiply:
$\left( (-3)^2+ (-2)^4 \right) \times\left( -\dfrac15 \right)=$
a
|
|
b
|
|
c
|
|
d
|
|
e
|
Evaluate $\left(-\dfrac 1 3\right)\div \left( (-4)^3 \div 8 \right).$
a
|
$\dfrac 8 3$ |
b
|
$-3$ |
c
|
$-\dfrac{5}{24} $ |
d
|
$\dfrac{1}{24} $ |
e
|
$12$ |
$\left((-4)^2+5\times2\right)-\left((-2)^3\div(-4)\right)=$
a
|
|
b
|
|
c
|
|
d
|
|
e
|