As we already know, to evaluate numerical expressions with a mix of different operations, we must follow the order of operations (PEMDAS).

The same rules apply to numerical expressions with negative numbers. For example, let's compute the value of

(-2) \times (-3)^2.

To evaluate this expression, we use PEMDAS. First, we compute the exponents: (-2)\,\times\overbrace{(-3)^2}^{\large\color{blue} 9} = (-2) \times {\color{blue} 9}

Then, we multiply: (-2) \times 9 = -18

Therefore, (-2) \times (-3)^2 = -18.

FLAG

Calculate (-3)^3 \div 6 .

EXPLANATION

To evaluate this expression, we use PEMDAS. First, we compute the exponents:

\begin{align*} \underbrace{(-3)^3}_{\large\color{blue} -27} \div 6 = ({\color{blue}-27}) \div 6 \end{align*}

Then, we divide:

\begin{align*} (-27) \div 6 &= \\[5pt] \dfrac{(-27)}{6} &= \\[5pt] -\dfrac{27}{6} &= \\[5pt] -\dfrac{27 \div 3}{6 \div 3} &= \\[5pt] -\dfrac{9}{2} \end{align*}

FLAG

$\left(-3\right)^3+4^3=$

a
$55$
b
$81$
c
$3$
d
$15$
e
$37$

$4 \times \left(-2\right)^4=$

a
b
c
d
e

$6\div 3 + \left(-3\right)^3=$

a
b
c
d
e

Evaluate (1-4)^2 \times \dfrac{1}{12}.

EXPLANATION

To evaluate this expression, we use PEMDAS. First, we perform the operation inside the parentheses:

\begin{align*} (\underbrace{1-4}_{\large \color{blue}-3})^2 \times \dfrac{1}{12} &= ({\color{blue}-3})^2 \times \dfrac{1}{12} \end{align*}

Next, we compute the exponents:

\begin{align*} \underbrace{({\color{blue}-3})^2}_{\large \color{red} 9} \times \dfrac{1}{12} &= {\color{red}9} \times \dfrac{1}{12} \end{align*}

Finally, we multiply:

\begin{align*} 9 \times \dfrac{1}{12} &= \\[5pt] \dfrac{9}{1} \times \dfrac{1}{12} &= \\[5pt] \dfrac{9 \times 1}{1 \times 12} &= \\[5pt] \dfrac{9}{12} &= \\[5pt] \dfrac{9 \div 3}{12 \div 3} &= \\[5pt] \dfrac{3}{4} \end{align*}

FLAG

$\left(1-(-3)\right)^3=$

a
b
c
d
e

Evaluate $\left(-1-2\right)^3.$

a
$-9$
b
$-27$
c
$8$
d
$1$
e
$-1$

$(4\div (-2)+5)^4=$

a
b
c
d
e

What is the value of \left( 5 \div (-2)^2 \right) \times \left( -\dfrac{4}{5} \right).

EXPLANATION

To evaluate this expression, we use PEMDAS. First, consider the expression inside the parenthesis:

\begin{align*} 5 \div (-2)^2 \end{align*}

Applying PEMDAS to this expression, we obtain:

\begin{align*} 5 \div (-2)^2 &= \\[5pt] 5 \div 4 &= \\[5pt] \dfrac{5}{4} & \end{align*}

Finally, we multiply:

\begin{align*} \require{cancel} \big( \overbrace{5 \div (-2)^2}^{\color{blue} \dfrac{5}{4}} \big) \times \left( -\dfrac{4}{5} \right) &= \\[4pt] {\color{blue}\dfrac{5}{4}} \times \left( -\dfrac{4}{5} \right) &= \\[5pt] -\dfrac{5}{4} \times \dfrac{4}{5} &= \\[5pt] -\dfrac{5 \times 4}{4 \times 5} &= \\[5pt] -\dfrac{\cancel{5} \times \cancel{4}}{\cancel{4} \times \cancel{5}} &= \\[5pt] -1 \end{align*}

FLAG

$\left( (-3)^2+ (-2)^4 \right) \times\left( -\dfrac15 \right)=$

a
b
c
d
e

Evaluate $\left(-\dfrac 1 3\right)\div \left( (-4)^3 \div 8 \right).$

a
$\dfrac 8 3$
b
$-3$
c
$-\dfrac{5}{24} $
d
$\dfrac{1}{24} $
e
$12$

$\left((-4)^2+5\times2\right)-\left((-2)^3\div(-4)\right)=$

a
b
c
d
e
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL