Exponents often show up in expressions with other operations. To evaluate these expressions, we follow the order of operations.

The order of the operations we perform follows the acronym PEMDAS:

  • First, we calculate any operations inside Parentheses, ().

  • Next, we evaluate the Exponents (a^b).

  • Then, we perform the Multiplications ( \times ) and Divisions ( \div ).

  • Finally, we complete any Additions ( + ) and Subtractions ( - ).

For example, let's look at the following expression: 3 \times 2^2

To evaluate this expression, we use PEMDAS. Here, we do not have Parentheses, so we move on to Exponents: 3\,\times\overbrace{2^2}^{\large\color{blue} 4} = 3\times \color{blue} 4

Then, we perform the Multiplication: 3\times 4 = 12

Therefore, 3 \times 2^2=12.

FLAG

Evaluate 4^2 +(5-3).

EXPLANATION

To evaluate this expression, we use PEMDAS. We start with the Parentheses: 4^2\,+\underbrace{(5-3)}_{\large\color{blue} 2} =4^2\,+ {\color{blue} 2}

Then, we compute the Exponents: \overbrace{4^2}^{\large\color{red} 16}+2 = {\color{red} 16}+2

Finally, we perform the Addition: 16+2 = 18

Therefore, 4^2 +(5-3)=18.

FLAG

$3^2 \times 2 =$

a
$36$
b
$40$
c
$81$
d
$6$
e
$18$

$(6-2) + 2^3 =$

a
$8$
b
$6$
c
$16$
d
$12$
e
$20$

$3^2-2^3 = $

a
b
c
d
e

Calculate 28\div(7-5)^2.

EXPLANATION

To evaluate this expression, we use PEMDAS. We start with the Parentheses: 28\div \underbrace{(7-5)}_{\large\color{blue} 2}{}^2 =28\div {\color{blue} 2}^2

Then, we compute the Exponents: 28\div\overbrace{2^2}^{\large\color{red} 4} =28\div {\color{red} 4}

Finally, we perform the Division: 28\div 4 =7

Therefore, 28\div(7-5)^2=7.

FLAG

$(2+1)^2=$

a
$5$
b
$16$
c
$1$
d
$4$
e
$9$

$5^2-(3+1)^2 = $

a
b
c
d
e

$(8-2)^2\div 4 = $

a
b
c
d
e

Evaluate 5\times \left(3+2^2\right).

EXPLANATION

According to PEMDAS, we should first calculate the expression inside the Parentheses: \left(3+2^2\right).

To evaluate \left(3+2^2\right), we should again apply PEMDAS. We start with the Exponents: 3\,+\overbrace{2^2}^{\large\color{blue} 4} =3+ {\color{blue} 4}

Then, we perform the Addition: 3 + 4 = {\color{red} 7}

So we have: 5\times \underbrace{\left(3+2^2\right)}_{\large\color{red} 7} =5\times {\color{red} 7}

Now that we have calculated the expression inside the Parentheses, we can finally move on to the Multiplication: 5 \times 7 = 35

Therefore, 5\times\left(3+2^2\right)=35.

FLAG

$80\div \left(3^3-7\right)=$

a
b
c
d
e

$\left(3^3+3\right)\times 3=$

a
b
c
d
e

$\left(3^2-5\right)\times 3=$

a
$3$
b
$9$
c
$12$
d
$4$
e
$6$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL