The distributive law states that multiplying a group of terms by a number is the same as multiplying each term separately by that same number and adding the products.

For example, let's take a look at the following expression:

2(3+4).

We can evaluate this expression using the distributive law:

Therefore,

\begin{align*} {\color{blue}2}({\color{red}3}+{\color{red}4}) &= \\[5pt] {\color{blue}2}\cdot{\color{red}3} + {\color{blue}2}\cdot{\color{red}4} &=\\[5pt] 6 + 8 &=\\[5pt] 14 &. \end{align*}

The distributive law also applies when the multiplication occurs on the right of the parentheses:

\begin{align*} ({\color{red}3}+{\color{red}4}) \cdot {\color{blue}2} &= \\[5pt] {\color{red}3}\cdot {\color{blue}2} + {\color{red}4} \cdot {\color{blue}2} &=\\[5pt] 6 + 8 &=\\[5pt] 14 & \end{align*}

FLAG

Expand 3(4x+2).

EXPLANATION

Using the distributive law, we multiply each term inside the parentheses by the number 3\mathbin{:}

\begin{align*} 3(4x+2) &=\\[5pt] 3\cdot 4x+3\cdot2 &= \\[5pt] 12x+6 & \end{align*}

FLAG

$5(8x + 3)=$

a
$-40x - 15$
b
$13x + 8$
c
$-40x + 15$
d
$40x + 15$
e
$40x - 15$

$(2 + 5x) \cdot 3=$

a
$23 + 53x$
b
$6 + 15x$
c
$5 + 8x$
d
$2 + 15x$
e
$6 + 5x$

Expand (2y+7) \cdot (-3).

EXPLANATION

Using the distributive law, we multiply each term inside the parentheses by the number (-3)\mathbin{:}

\eqalign{ (2y+7) \cdot (-3)&=\\[5pt] 2y\cdot(-3)+7\cdot(-3)&=\\[5pt] (-6y) + (-21)&=\\[5pt] -6y-21 }

FLAG

$-2(3x+1)=$

a
$-6x+1$
b
$-6x+2$
c
$-6x-2$
d
$-23x-21$
e
$x-1$

$(9n+8)\cdot(-5)=$

a
$-45n-40$
b
$45n-40$
c
$45n-13$
d
$-45n-13$
e
$45n+40$

The distributive law also works when there is subtraction inside the parentheses.

For example, we can expand the expression 2(3-4) as follows:

Notice that we keep a plus ( + ) sign between the two terms. This helps us to avoid mistakes when multiplying with negative numbers.

Now, evaluating our expression, we have

\begin{align*} {\color{blue}2}({\color{red}3}-{\color{red}4}) &= \\[5pt] {\color{blue}2}\cdot{\color{red}3} + {\color{blue}2}\cdot({\color{red}-4}) &=\\[5pt] (6) + (-8) &=\\[5pt] 6 -8 &=\\[5pt] -2 &. \end{align*}

Finally, the distributive law also applies when the multiplication occurs on the right of the parentheses:

\begin{align*} ({\color{red}3}-{\color{red}4}) \cdot {\color{blue}2} &= \\[5pt] {\color{red}3}\cdot {\color{blue}2} + ({\color{red}-4})\cdot {\color{blue}2} &=\\[5pt] (6) + (-8) &=\\[5pt] 6 -8 &=\\[5pt] -2 &. \end{align*}

FLAG

Expand 7(5x-3y).

EXPLANATION

Using the distributive law, we multiply each term inside the parentheses by the number 7\mathbin: \begin{align*} 7(5x-3y) &=\\[5pt] 7\cdot 5x + 7\cdot (-3y) &= \\[5pt] (35x) + (-21y) & = \\[5pt] 35x - 21y & \end{align*}

FLAG

$5(3a - 2b) =$

a
$5a-2b$
b
$-15a+10b$
c
$15a+10b$
d
$53a-52b$
e
$15a-10b$

$(4x - 1) \cdot 9=$

a
$36x - 9$
b
$4x - 9$
c
$36x - 4$
d
$24x - 9$
e
$36x - 1$

Expand -11(4x - 3y) .

EXPLANATION

Using the distributive law, we multiply each term inside the parentheses by the number (-11)\mathbin{:} \begin{eqnarray} -11(4x - 3y) & = \\[5pt] (-11) \cdot 4x + (-11) \cdot (-3y) & = \\[5pt] (-44x) + (33y) & = \\[5pt] -44x + 33y & \end{eqnarray}

FLAG

$-5(x - 2y)=$

a
$5x - 10y$
b
$5x + 10y$
c
$-5x + 10y$
d
$-5x - 10y$
e
$5x - 7y$

$(x - 4)\cdot (-2)=$

a
$x-8$
b
$-6-2x$
c
$-8-2x$
d
$8+2x$
e
$8-2x$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL