We can use the standard algorithm to divide a three-digit number by a one-digit number. To illustrate, let's divide
468
by
2.
We start by writing down the question using long division notation:
2
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 8}
First, we consider the hundreds. How many times does
2
go into
{\color{red}4}?
It goes in
{\color{blue}2}
times, and
2\times {\color{blue}2} =4,
so there is a remainder of
{\color{red}4} - 4 = 0.
We write the
{\color{blue}2}
above the hundreds, the
4
at the bottom, and subtract to get the remainder of
0.
Then we bring the tens digit
(6)
down next to the remainder.
\color{blue}2
2
\!\!\require{enclose}\enclose{longdiv}{{\color{red}4} {\:\phantom{|}} 6 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
\color{lightgray}\downarrow
0
\color{lightgray}6
Divide:
{\color{red}4} \div 2 = {\color{blue}2}
Write over hundreds:
\color{blue}2
Multiply:
2 \times {\color{blue}2} = 4
Subtract:
{\color{red}4} - 4 = 0
Bring down:
6
Next, we consider the tens. How many times does
2
go into
{\color{red}6}?
It goes in
{\color{blue}3}
times, and
2\times {\color{blue}3} =6,
so there is a remainder of
{\color{red}6} - 6 = 0.
We write the
{\color{blue}3}
above the tens, the
6
at the bottom, and subtract to get the remainder of
0.
Then, we bring the ones digit
(8)
down next to the remainder.
2
\color{blue}3
2
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
\color{lightgray}\downarrow
0
\color{red}6
\color{lightgray}\downarrow
-\!\!\!
6
\color{lightgray}\downarrow
0
\color{lightgray}8
Divide:
{\color{red}6} \div 2 = {\color{blue}3}
Write over tens:
\color{blue}3
Multiply:
2 \times {\color{blue}3} = 6
Subtract:
{\color{red}6} - 6 = 0
Bring down:
8
Finally, we consider the ones. How many times does
2
go into
{\color{red}8}?
It goes in
{\color{blue}4}
times, and
2\times {\color{blue}4} =8,
so there is a remainder of
{\color{red}8} - 8 = 0.
We write the
{\color{blue}4}
above the ones, the
8
at the bottom, and subtract to get the final remainder of
0.
2
3
\color{blue}4
2
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
0
6
-\!\!\!
6
0
\color{red}8
-\!\!\!
8
\fbox{0}
Divide:
{\color{red}8} \div 2 = {\color{blue}4}
Write over ones:
\color{blue}4
Multiply:
2 \times {\color{blue}4} = 8
Subtract:
{\color{red}8} - 8 = \fbox{0}
We've gone through all the digits in the number
468,
so the division is done. The number we have written at the top is the answer. There is no remainder.
Therefore, we conclude that
468 \div 2 = 234.
From top to bottom, what are the missing digits in the following long division problem?
1
\fbox{[math]\phantom{1}[/math]}
5
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 3}
-\!\!\!\!\!\!\!
4
0
\fbox{[math]\phantom{6}[/math]}
-\!\!\!\!\!\!\!
0
4
2
3
-\!\!\!\!\!
2
0
\fbox{[math]\phantom{3}[/math]}
We start by writing down the question using long division notation:
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 3}
First, we consider the hundreds:
\color{blue}1
4
\!\!\require{enclose}\enclose{longdiv}{{\color{red}4} {\:\phantom{|}} 6 {\:\phantom{|}} 3}
-\!\!\!\!\!\!\!
4
\color{lightgray}\downarrow
0
\color{lightgray}6
Divide:
{\color{red}4} \div 4 = {\color{blue}1}
Write over hundreds:
\color{blue}1
Multiply:
4 \times {\color{blue}1} = 4
Subtract:
{\color{red}4} - 4 = 0
Bring down:
6
Next, we consider the tens:
1
\color{blue}1
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 3}
-\!\!\!\!\!\!\!
4
\color{lightgray}\downarrow
\color{red}0
\color{red}6
\color{lightgray}\downarrow
-\!\!\!\!\!\!\!
0
4
\color{lightgray}\downarrow
2
\color{lightgray}3
Divide:
{\color{red}6} \div 4 = {\color{blue}1}\,\text{R}\,2
Write over tens:
\color{blue}1
Multiply:
4 \times {\color{blue}1} = 4
Subtract:
{\color{red}6} - 4 = 2
Bring down:
3
Finally, we consider the ones:
1
1
\color{blue}5
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 3}
-\!\!\!\!\!\!\!
4
0
6
-\!\!\!\!\!\!\!
0
4
\color{red}2
\color{red}3
-\!\!\!\!\!
2
0
\fbox{3}
Divide:
{\color{red}23} \div 4 = {\color{blue}5}\,\text{R}\,3
Write over ones:
\color{blue}5
Multiply:
4 \times {\color{blue}5} = 20
Subtract:
{\color{red}23} - 20 = \fbox{3}
We've gone through all the digits in the number
463,
so the division is done. However, we still have a remainder of
3,
so we include this in our final answer.
Therefore,
463 \div 4 = 115\,\text{R}\,3.
The missing digits are
1,6
and
3.
1
\fbox{1}
5
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 6 {\:\phantom{|}} 3}
-\!\!\!\!\!\!\!
4
0
\fbox{6}
-\!\!\!\!\!\!\!
0
4
2
3
-\!\!\!\!\!
2
0
\fbox{3}
From top to bottom, what are the missing digits in the following long division problem?
$2$
$\fbox{$\phantom{7}$}$
$7$
$2$
$\!\!\require{enclose}\enclose{longdiv}{5 {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$4$
$1$
$5$
$-\!\!\!\!\!\!\!$
$1$
$\fbox{$\phantom{4}$}$
$1$
$5$
$-\!\!\!\!\!$
$1$
$\fbox{$\phantom{4}$}$
$1$
a
$6$, $2$ and $4$
b
$5$, $4$ and $2$
c
$7$, $4$ and $4$
d
$8$, $4$ and $4$
e
$4$, $4$ and $4$
We start by writing down the question using long division notation:
$2$
$\!\!\require{enclose}\enclose{longdiv}{5 {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
First, we consider the hundreds:
$\color{blue}2$
$2$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}5} {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$1$
$\color{lightgray}5$
Divide: ${\color{red}5} \div 2 = {\color{blue}2}\,\text{R}\,1$
Write over hundreds: $\color{blue}2$
Multiply: $2 \times {\color{blue}2} = 4$
Subtract: ${\color{red}5} - 4 = 1$
Bring down: $5$
Next, we consider the tens:
$2$
$\color{blue}7$
$2$
$\!\!\require{enclose}\enclose{longdiv}{5 {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$\color{red}1$
$\color{red}5$
$\color{lightgray}\downarrow$
$-\!\!\!\!\!\!\!$
$1$
$4$
$\color{lightgray}\downarrow$
$1$
$\color{lightgray}5$
Divide: ${\color{red}15} \div 2 = {\color{blue}7}\,\text{R}\,1$
Write over tens: $\color{blue}7$
Multiply: $2 \times {\color{blue}7} = 14$
Subtract: ${\color{red}15} - 14 = 1$
Bring down: $5$
Finally, we consider the ones:
$2$
$7$
$\color{blue}7$
$2$
$\!\!\require{enclose}\enclose{longdiv}{5 {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$4$
$1$
$5$
$-\!\!\!\!\!\!\!$
$1$
$4$
$\color{red}1$
$\color{red}5$
$-\!\!\!\!\!$
$1$
$4$
$\fbox{1}$
Divide: ${\color{red}15} \div 2 = {\color{blue}7}\,\text{R}\,1$
Write over ones: $\color{blue}7$
Multiply: $2 \times {\color{blue}7} = 14$
Subtract: ${\color{red}15} - 14 = \fbox{1}$
We've gone through all the digits in the number $555,$ so the division is done. However, we still have a remainder of $1,$ so we include this in our final answer.
Therefore,
\[
555 \div 2 = 277\,\text{R}\,1.
\]
The missing digits are $7$, $4$ and $4$:
$2$
$\fbox{7}$
$7$
$2$
$\!\!\require{enclose}\enclose{longdiv}{5 {\:\phantom{|}} 5 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$4$
$1$
$5$
$-\!\!\!\!\!\!\!$
$1$
$\fbox{4}$
$1$
$5$
$-\!\!\!\!\!$
$1$
$\fbox{4}$
$1$
From left to right, what are the missing digits in the following long division problem?
$\fbox{$\phantom{1}$}$
$\fbox{$\phantom{8}$}$
$\fbox{$\phantom{6}$}$
$4$
$\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
$-\!\!\!\!\!\!\!$
$4$
$3$
$4$
$-\!\!\!\!\!\!\!$
$3$
$2$
$2$
$4$
$-\!\!\!\!\!$
$2$
$4$
$0$
a
$1$, $8$ and $5$
b
$1$, $8$ and $8$
c
$1$, $8$ and $6$
d
$1$, $7$ and $5$
e
$1$, $7$ and $6$
We start by writing down the question using long division notation:
$4$
$\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
First, we consider the hundreds:
$\color{blue}1$
$4$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}7} {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$3$
$\color{lightgray}4$
Divide: ${\color{red}7} \div 4 = {\color{blue}1}\,\text{R}\,3$
Write over hundreds: $\color{blue}1$
Multiply: $4 \times {\color{blue}1} = 4$
Subtract: ${\color{red}7} - 4 = 3$
Bring down: $4$
Next, we consider the tens:
$1$
$\color{blue}8$
$4$
$\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$\color{red}3$
$\color{red}4$
$\color{lightgray}\downarrow$
$-\!\!\!\!\!\!\!$
$3$
$2$
$\color{lightgray}\downarrow$
$2$
$\color{lightgray}4$
Divide: ${\color{red}34} \div 4 = {\color{blue}8}\,\text{R}\,2$
Write over tens: $\color{blue}8$
Multiply: $4 \times {\color{blue}8} = 32$
Subtract: ${\color{red}34} - 32 = 2$
Bring down: $4$
Finally, we consider the ones:
$1$
$8$
$\color{blue}6$
$4$
$\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
$-\!\!\!\!\!\!\!$
$4$
$3$
$4$
$-\!\!\!\!\!\!\!$
$3$
$2$
$\color{red}2$
$\color{red}4$
$-\!\!\!\!\!$
$2$
$4$
$\fbox{0}$
Divide: ${\color{red}24} \div 4 = {\color{blue}6}$
Write over ones: $\color{blue}6$
Multiply: $4 \times {\color{blue}6} = 24$
Subtract: ${\color{red}24} - 24 = \fbox{0}$
We've gone through all the digits in the number $744,$ so the division is done.
Therefore,
\[
744 \div 4 = 186.
\]
The missing digits are $1$, $8$ and $6$:
$\fbox{1}$
$\fbox{8}$
$\fbox{6}$
$4$
$\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 4 {\:\phantom{|}} 4}$
$-\!\!\!\!\!\!\!$
$4$
$3$
$4$
$-\!\!\!\!\!\!\!$
$3$
$2$
$2$
$4$
$-\!\!\!\!\!$
$2$
$4$
$0$
We start by writing down the question using long division notation:
6
\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 4 {\:\phantom{|}} 7}
First, we consider the hundreds:
\color{blue}1
6
\!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 4 {\:\phantom{|}} 7}
-\!\!\!\!\!
6
\color{lightgray}\downarrow
2
\color{lightgray}4
Divide:
{\color{red}8} \div 6 = {\color{blue}1}\,\text{R}\,2
Write over hundreds:
\color{blue}1
Multiply:
6 \times {\color{blue}1} = 6
Subtract:
{\color{red}8} - 6 = 2
Bring down:
4
Next, we consider the tens:
1
\color{blue}4
6
\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 4 {\:\phantom{|}} 7}
-\!\!\!\!\!
6
\color{lightgray}\downarrow
\color{red}2
\color{red}4
\color{lightgray}\downarrow
-\!\!\!\!\!
2
4
\color{lightgray}\downarrow
0
\color{lightgray}7
Divide:
{\color{red}24} \div 6 = {\color{blue}4}
Write over tens:
\color{blue}4
Multiply:
6 \times {\color{blue}4} = 24
Subtract:
{\color{red}24} - 24 = 0
Bring down:
7
Finally, we consider the ones:
1
4
\color{blue}1
6
\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 4 {\:\phantom{|}} 7}
-\!\!\!\!\!
6
2
4
-\!\!\!\!\!\!\!
2
4
0
\color{red}7
-\!\!\!
6
\fbox{1}
Divide:
{\color{red}7} \div 6 = {\color{blue}1}\,\text{R}\,1
Write over ones:
\color{blue}1
Multiply:
6 \times {\color{blue}1} = 6
Subtract:
{\color{red}7} - 6 = \fbox{1}
We've gone through all the digits in the number
847,
so the division is done. However, we still have a remainder of
1,
so we include this in our final answer.
Therefore,
847 \div 6 = 141\,\text{R}\,1.
a
$274$
b
$276$
c
$277 \,\text{R}\, 1$
d
$275 \,\text{R}\, 2$
e
$273 \,\text{R}\, 1$
We start by writing down the question using long division notation:
$3$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 3 {\:\phantom{|}} 2}$
First, we consider the hundreds:
$\color{blue}2$
$3$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 3 {\:\phantom{|}} 2}$
$-\!\!\!\!\!\!\!$
$6$
$\color{lightgray}\downarrow$
$2$
$\color{lightgray}3$
Divide: ${\color{red}8} \div 3 = {\color{blue}2}\,\text{R}\,2$
Write over hundreds: $\color{blue}2$
Multiply: $3 \times {\color{blue}2} = 6$
Subtract: ${\color{red}8} - 6 = 2$
Bring down: $3$
Next, we consider the tens:
$2$
$\color{blue}7$
$3$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 3 {\:\phantom{|}} 2}$
$-\!\!\!\!\!\!\!$
$6$
$\color{lightgray}\downarrow$
$\color{red}2$
$\color{red}3$
$\color{lightgray}\downarrow$
$-\!\!\!\!\!\!\!$
$2$
$1$
$\color{lightgray}\downarrow$
$2$
$\color{lightgray}2$
Divide: ${\color{red}23} \div 3 = {\color{blue}7}\,\text{R}\,2$
Write over tens: $\color{blue}7$
Multiply: $3 \times {\color{blue}7} = 21$
Subtract: ${\color{red}23} - 21 = 2$
Bring down: $2$
Finally, we consider the ones:
$2$
$7$
$\color{blue}7$
$3$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 3 {\:\phantom{|}} 2}$
$-\!\!\!\!\!\!\!$
$6$
$2$
$3$
$-\!\!\!\!\!\!\!$
$2$
$1$
$\color{red}2$
$\color{red}2$
$-\!\!\!\!\!$
$2$
$1$
$\fbox{1}$
Divide: ${\color{red}22} \div 3 = {\color{blue}7}\,\text{R}\,1$
Write over ones: $\color{blue}7$
Multiply: $3 \times {\color{blue}7} = 21$
Subtract: ${\color{red}22} - 21 = \fbox{1}$
We've gone through all the digits in the number $832,$ so the division is done. However, we still have a remainder of $1,$ so we include this in our final answer.
Therefore,
\[
832 \div 3 = 277\,\text{R}\,1.
\]
a
$126$
b
$125 \,\text{R}\, 1$
c
$125$
d
$124 \,\text{R}\, 2$
e
$124$
We start by writing down the question using long division notation:
$5$
$\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 2 {\:\phantom{|}} 0}$
First, we consider the hundreds:
$\color{blue}1$
$5$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}6} {\:\phantom{|}} 2 {\:\phantom{|}} 0}$
$-\!\!\!\!\!\!\!$
$5$
$\color{lightgray}\downarrow$
$1$
$\color{lightgray}2$
Divide: ${\color{red}6} \div 5 = {\color{blue}1} \,\text{R}\, 1$
Write over hundreds: $\color{blue}1$
Multiply: $5 \times {\color{blue}1} = 5$
Subtract: ${\color{red}6} - 5 = 1$
Bring down: $2$
Next, we consider the tens:
$1$
$\color{blue}2$
$5$
$\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 2 {\:\phantom{|}} 0}$
$-\!\!\!\!\!\!\!$
$5$
$\color{lightgray}\downarrow$
$\color{red}1$
$\color{red}2$
$\color{lightgray}\downarrow$
$-\!\!\!\!\!\!\!$
$1$
$0$
$\color{lightgray}\downarrow$
$2$
$\color{lightgray}0$
Divide: ${\color{red}12} \div 5 = {\color{blue}2} \, \text{R} \, 2$
Write over tens: $\color{blue}2$
Multiply: $5 \times {\color{blue}2} = 10$
Subtract: ${\color{red}12} - 10 = 2$
Bring down: $0$
Finally, we consider the ones:
$1$
$2$
$\color{blue}4$
$5$
$\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 2 {\:\phantom{|}} 0}$
$-\!\!\!\!\!\!\!$
$5$
$1$
$2$
$-\!\!\!\!\!\!\!$
$1$
$0$
$\color{red}2$
$\color{red}0$
$-\!\!\!\!\!$
$2$
$0$
$\fbox{0}$
Divide: ${\color{red}20} \div 5 = {\color{blue}4}$
Write over ones: $\color{blue}4$
Multiply: $5 \times {\color{blue}4} = 20$
Subtract: ${\color{red}20} - 20 = \fbox{0}$
We've gone through all the digits in the number $620,$ so the division is done.
Therefore,
\[
620 \div 5 = 124.
\]
We can also use the standard algorithm to find the value of
305 \div 5.
However, because the hundreds digit (
3
) is less than the divisor (
5
), the process will be slightly different.
We start by writing down the question using long division notation:
5
\!\!\require{enclose}\enclose{longdiv}{3 {\:\phantom{|}} 0 {\:\phantom{|}} 5}
Warning : Notice that
\color{red}3
(the number of hundreds in
{\color{red}3}05
) is less than the divisor
5,
so it doesn't divide. To counter this, we should consider both the hundreds and tens. That is, we should divide
\color{red}30
by
5,
as follows:
\color{blue}6
5
\!\!\require{enclose}\enclose{longdiv}{{\color{red}3} {\:\phantom{|}} {\color{red}0} {\:\phantom{|}} 5}
-\!\!\!\!\!\!\!
3
0
\color{lightgray}\downarrow
0
\color{lightgray}5
Divide:
{\color{red}30} \div 5 = {\color{blue}6}
Write over tens:
\color{blue}6
Multiply:
5 \times {\color{blue}6} = 30
Subtract:
{\color{red}30} - 30 = 0
Bring down:
5
Next, we consider the ones:
6
\color{blue}1
5
\!\!\require{enclose}\enclose{longdiv}{3 {\:\phantom{|}} 0 {\:\phantom{|}} 5}
-\!\!\!\!\!\!\!
3
0
0
\color{red}5
-\!\!\!
5
\fbox{0}
Divide:
{\color{red}5} \div 5 = {\color{blue}1}
Write over ones:
\color{blue}1
Multiply:
5 \times {\color{blue}1} = 5
Subtract:
{\color{red}5} - 5 = 0
We've gone through all the digits in the number
305,
so the division is done. The number we have written at the top is the answer. There is no remainder.
Therefore,
305 \div 5 = 61.
Find the quotient in the following long division problem:
\require{enclose}
6 \: \enclose{longdiv}{3 \: 7\: 9}
Notice that
\color{red}3
(the number of hundreds in
{\color{red}3}79
) is less than the divisor
6.
Therefore, we should consider both the hundreds and tens:
\color{blue}6
6
\!\!\require{enclose}\enclose{longdiv}{{\color{red}3} {\:\phantom{|}} {\color{red}7} {\:\phantom{|}} 9}
-\!\!\!
3
6
\color{lightgray}\downarrow
1
\color{lightgray}9
Divide:
{\color{red}37} \div 6 = {\color{blue}6}\,\text{R}\,1
Write over tens:
\color{blue}6
Multiply:
6 \times {\color{blue}6} = 36
Subtract:
{\color{red}37} - 36 = 1
Bring down:
9
Next, we consider the ones:
6
\color{blue}3
6
\!\!\require{enclose}\enclose{longdiv}{3 {\:\phantom{|}} 7 {\:\phantom{|}} 9}
-\!\!\!
3
6
\color{red}1
\color{red}9
-\!\!\!
1
8
\fbox{1}
Divide:
{\color{red}19} \div 6 = {\color{blue}3}\,\text{R}\,1
Write over ones:
\color{blue}3
Multiply:
6 \times {\color{blue}3} = 18
Subtract:
{\color{red}19} - 18 = 1
We've gone through all the digits in the number
379,
so the division is done. However, we still have a remainder of
1,
so we include this in our final answer.
Therefore,
379 \div 6 = 63\,\text{R}\,1.
So, the quotient is
63.
Find the quotient in the following long division problem:
\[
\require{enclose}
4 \: \enclose{longdiv}{2 \: 4\: 8}
\]
a
$64$
b
$59$
c
$62$
d
$61$
e
$63$
Notice that $\color{red}2$ (the number of hundreds in ${\color{red}2}48$) is less than the divisor $4.$ Therefore, we should consider both the hundreds and tens:
$\color{blue}6$
$4$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}2} {\:\phantom{|}} {\color{red}4} {\:\phantom{|}} 8}$
$-\!\!\!\!\!\!\!$
$2$
$4$
$\color{lightgray}\downarrow$
$0$
$\color{lightgray}8$
Divide: ${\color{red}24} \div 4 = {\color{blue}6}$
Write over tens: $\color{blue}6$
Multiply: $4 \times {\color{blue}6} = 24$
Subtract: ${\color{red}24} - 24 = 0$
Bring down: $8$
Next, we consider the ones:
$6$
$\color{blue}2$
$4$
$\!\!\require{enclose}\enclose{longdiv}{2 {\:\phantom{|}} 4 {\:\phantom{|}} 8}$
$-\!\!\!\!\!\!\!$
$2$
$4$
$0$
$\color{red}8$
$-\!\!\!$
$8$
$\fbox{0}$
Divide: ${\color{red}8} \div 4 = {\color{blue}2}$
Write over ones: $\color{blue}2$
Multiply: $4 \times {\color{blue}2} = 8$
Subtract: ${\color{red}8} - 8 = 0$
We've gone through all the digits in the number $248,$ so the division is done.
Therefore,
\[
248 \div 4 = 62.
\]
So, the quotient is $62.$
Find the quotient in the following long division problem:
\[
\require{enclose}
3 \: \enclose{longdiv}{1 \: 2\: 3}
\]
a
$42$
b
$43$
c
$31$
d
$41$
e
$52$
Notice that $\color{red}1$ (the number of hundreds in ${\color{red}1}23$) is less than the divisor $3.$ Therefore, we should consider both the hundreds and tens:
$\color{blue}4$
$3$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}1} {\:\phantom{|}} {\color{red}2} {\:\phantom{|}} 3}$
$-\!\!\!\!\!\!\!$
$1$
$2$
$\color{lightgray}\downarrow$
$0$
$\color{lightgray}3$
Divide: ${\color{red}12} \div 3 = {\color{blue}4}$
Write over tens: $\color{blue}4$
Multiply: $3 \times {\color{blue}4} = 12$
Subtract: ${\color{red}12} - 12 = 0$
Bring down: $3$
Next, we consider the ones:
$4$
$\color{blue}1$
$3$
$\!\!\require{enclose}\enclose{longdiv}{1 {\:\phantom{|}} 2 {\:\phantom{|}} 3}$
$-\!\!\!\!\!\!\!$
$1$
$2$
$0$
$\color{red}3$
$-\!\!\!\!\!$
$3$
$\fbox{0}$
Divide: ${\color{red}3} \div 3 = {\color{blue}1}$
Write over ones: $\color{blue}1$
Multiply: $3 \times {\color{blue}1} = 3$
Subtract: ${\color{red}3} - 3 = 0$
We've gone through all the digits in the number $123,$ so the division is done.
Therefore,
\[
123 \div 3 = 41.
\]
So, the quotient is $41.$
We can also use the standard algorithm to find the value of
408 \div 4.
We will see that the situation here is slightly different. Let's work through it.
As usual, we start by writing down the question using long division notation:
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
First, we consider the hundreds:
\color{blue}1
4
\!\!\require{enclose}\enclose{longdiv}{{\color{red}4} {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
\color{lightgray}\downarrow
0
\color{lightgray}0
Divide:
{\color{red}4} \div 4 = {\color{blue}1}
Write over hundreds:
\color{blue}1
Multiply:
4 \times {\color{blue}1} = 4
Subtract:
{\color{red}4} - 4 = 0
Bring down:
0
Next, we consider the tens:
1
\color{blue}0
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
0
\color{red}0
Divide:
{\color{red}0} \div 4 = {\color{blue}0}
Write over tens:
\color{blue}0
Wait! Notice that
\color{red}0
is less than the divisor
4,
but not all numbers of the dividend have yet been used! In this case, we need to bring down one more digit:
1
0
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
\color{lightgray}\downarrow
0
0
\color{lightgray}8
Finally, we consider the ones:
1
0
\color{blue}2
4
\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
4
0
0
\color{red}8
-\!\!\!
8
\fbox{0}
Divide:
{\color{red}8} \div 4 = {\color{blue}2}
Write over ones:
\color{blue}2
Multiply:
4 \times {\color{blue}2} = 8
Subtract:
{\color{red}8} - 8 = \fbox{0}
We've gone through all the digits in the number
408,
so the division is done. The number we have written at the top is the answer. There is no remainder.
Therefore,
408 \div 4 = 102.
We start by writing down the question using long division notation:
3
\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
First, we consider the hundreds:
\color{blue}2
3
\!\!\require{enclose}\enclose{longdiv}{{\color{red}6} {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
6
\color{lightgray}\downarrow
0
\color{lightgray}0
Divide:
{\color{red}6} \div 3 = {\color{blue}2}
Write over hundreds:
\color{blue}2
Multiply:
3 \times {\color{blue}2} = 6
Subtract:
{\color{red}6} - 6 = 0
Bring down:
0
Next, we consider the tens:
2
\color{blue}0
3
\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
6
0
\color{red}0
Divide:
{\color{red}0} \div 3 = {\color{blue}0}
Write over tens:
\color{blue}0
Notice that
\color{red}0
is less than the divisor
3
but not all numbers of the dividend have yet been used. Therefore, we need to bring down one more digit:
2
0
3
\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
6
\color{lightgray}\downarrow
0
0
\color{lightgray}8
Finally, we consider the ones:
2
0
\color{blue}2
3
\!\!\require{enclose}\enclose{longdiv}{6 {\:\phantom{|}} 0 {\:\phantom{|}} 8}
-\!\!\!\!\!
6
0
0
\color{red}8
-\!\!\!
6
\fbox{2}
Divide:
{\color{red}8} \div 3 = {\color{blue}2}\,\text{R}\,2
Write over ones:
\color{blue}2
Multiply:
3 \times {\color{blue}2} = 6
Subtract:
{\color{red}8} - 6 = \fbox{2}
We've gone through all the digits in the number
608,
so the division is done. However, we still have a remainder of
2,
so we include this in our final answer.
Therefore,
608 \div 3 = 202\,\text{R}\,2.
a
$202\,\text{R}\,1$
b
$201\,\text{R}\,1$
c
$200\,\text{R}\,5$
d
$200\,\text{R}\,1$
e
$205$
We start by writing down the question using long division notation:
$4$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 0 {\:\phantom{|}} 5}$
First, we consider the hundreds:
$\color{blue}2$
$4$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 0 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$8$
$\color{lightgray}\downarrow$
$0$
$\color{lightgray}0$
Divide: ${\color{red}8} \div 4 = {\color{blue}2}$
Write over hundreds: $\color{blue}2$
Multiply: $4 \times {\color{blue}2} = 8$
Subtract: ${\color{red}8} - 8 = 0$
Bring down: $0$
Next, we consider the tens:
$2$
$\color{blue}0$
$4$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 0 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$8$
$0$
$\color{red}0$
Divide: ${\color{red}0} \div 4 = {\color{blue}0}$
Write over tens: $\color{blue}0$
Notice that $\color{red}0$ is less than the divisor $4$ but not all numbers of the dividend have yet been used. Therefore, we need to bring down one more digit:
$2$
$0$
$4$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 0 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$8$
$\color{lightgray}\downarrow$
$0$
$0$
$\color{lightgray}5$
Finally, we consider the ones:
$2$
$0$
$\color{blue}1$
$4$
$\!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 0 {\:\phantom{|}} 5}$
$-\!\!\!\!\!\!\!$
$8$
$0$
$0$
$\color{red}5$
$-\!\!\!\!\!$
$4$
$\fbox{1}$
Divide: ${\color{red}5} \div 4 = {\color{blue}1}\,\text{R}\,1$
Write over ones: $\color{blue}1$
Multiply: $4 \times {\color{blue}1} = 4$
Subtract: ${\color{red}5} - 4 = \fbox{1}$
We've gone through all the digits in the number $805,$ so the division is done. However, we still have a remainder of $1,$ so we include this in our final answer.
Therefore,
\[
805 \div 4 = 201\,\text{R}\,1.
\]
a
$200$
b
$208\,\text{R}\,3$
c
$201\,\text{R}\,1$
d
$203\,\text{R}\,1$
e
$204\,\text{R}\,2$
We start by writing down the question using long division notation:
$2$
$\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 7}$
First, we consider the hundreds:
$\color{blue}2$
$2$
$\!\!\require{enclose}\enclose{longdiv}{{\color{red}4} {\:\phantom{|}} 0 {\:\phantom{|}} 7}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$0$
$\color{lightgray}0$
Divide: ${\color{red}4} \div 2 = {\color{blue}2}$
Write over hundreds: $\color{blue}2$
Multiply: $2 \times {\color{blue}2} = 4$
Subtract: ${\color{red}4} - 4 = 0$
Bring down: $0$
Next, we consider the tens:
$2$
$\color{blue}0$
$2$
$\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 7}$
$-\!\!\!\!\!\!\!$
$4$
$0$
$\color{red}0$
Divide: ${\color{red}0} \div 2 = {\color{blue}0}$
Write over tens: $\color{blue}0$
Notice that $\color{red}0$ is less than the divisor $2$ but not all numbers of the dividend have yet been used. Therefore, we need to bring down one more digit:
$2$
$0$
$2$
$\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 7}$
$-\!\!\!\!\!\!\!$
$4$
$\color{lightgray}\downarrow$
$0$
$0$
$\color{lightgray}7$
Finally, we consider the ones:
$2$
$0$
$\color{blue}3$
$2$
$\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 0 {\:\phantom{|}} 7}$
$-\!\!\!\!\!\!\!$
$4$
$0$
$0$
$\color{red}7$
$-\!\!\!\!\!$
$6$
$\fbox{1}$
Divide: ${\color{red}7} \div 2 = {\color{blue}3}\,\text{R}\,1$
Write over ones: $\color{blue}3$
Multiply: $2 \times {\color{blue}3} = 6$
Subtract: ${\color{red}7} - 6 = \fbox{1}$
We've gone through all the digits in the number $407,$ so the division is done. However, we still have a remainder of $1,$ so we include this in our final answer.
Therefore,
\[
407 \div 2 = 203\,\text{R}\,1.
\]
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL