We use the standard algorithm to divide a two-digit number by a one-digit number. To illustrate, let's divide 92 by 4.

We start by writing down the question using long division notation, as follows:

4 \!\!\require{enclose}\enclose{longdiv}{9 {\:\phantom{|}} 2}

First, we consider the tens. How many times does 4 go into {\color{red}9}? It goes in {\color{blue}2} times, and 4\times {\color{blue}2} =8, so there is a remainder of {\color{red}9} - 8 = 1.

We write the {\color{blue}2} above the tens, the 8 at the bottom, and subtract to get the remainder of 1. Then we bring the ones digit ( 2 ) down next to the remainder.

\color{blue}2
4 \!\!\require{enclose}\enclose{longdiv}{{\color{red}9} {\:\phantom{|}} 2}
-\!\!\!\!\!\!\! 8 \color{lightgray}\downarrow
1 \color{lightgray}2

Divide: {\color{red}9} \div 4 = {\color{blue}2}\,\text{R}\,1
Write over tens: \color{blue}2
Multiply: 4 \times {\color{blue}2} = 8
Subtract: {\color{red}9} - 8 = 1
Bring down: 2

Next, we consider the ones. How many times does 4 go into {\color{red}12}? It goes in {\color{blue}3} times, and 4\times {\color{blue}3} =12, so there is no remainder ( {\color{red}12} - 12 = 0 ).

We write the {\color{blue}3} above the ones, the 12 at the bottom, and subtract to get the final remainder of 0.

2 \color{blue}3
4 \!\!\require{enclose}\enclose{longdiv}{9 {\:\phantom{|}} 2}
-\!\!\!\!\!\!\! 8
\color{red}1 \color{red}2
-\!\!\!\!\!\!\! 1 2
\fbox{0}

Divide: {\color{red}12} \div 4 = {\color{blue}3}
Write over ones: \color{blue}3
Multiply: 4 \times {\color{blue}3} = 12
Subtract: {\color{red}12} - 12 = \fbox{0}

We've gone through all the digits in the number 92, so the division is done. The number we have written at the top is the answer.

Therefore, 92 \div 4 = 23.

FLAG

What is 86 divided by 2?

EXPLANATION

We start by writing down the question using long division notation:

2 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 6}

First, we consider the tens:

\color{blue}4
2 \!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 6}
-\!\!\!\!\!\!\! 8 \color{lightgray}\downarrow
0 \color{lightgray}6

Divide: {\color{red}8} \div 2 = {\color{blue}4}
Write over tens: \color{blue}4
Multiply: 2 \times {\color{blue}4} = 8
Subtract: {\color{red}8} - 8 = 0
Bring down: 6

Next, we consider the ones:

4 \color{blue}3
2 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 6}
-\!\!\!\!\!\!\! 8
0 \color{red}6
-\!\!\!\! 6
\fbox{0}

Divide: {\color{red}6} \div 2 = {\color{blue}3}
Write over ones: \color{blue}3
Multiply: 2 \times {\color{blue}3} = 6
Subtract: {\color{red}6} - 6 = \fbox{0}

We've gone through all the digits in the number 86, so the division is done.

Therefore, 86 \div 2 = 43.

FLAG

What is $84$ divided by $4?$

a
$24$
b
$21 \,\text{R}\, 1$
c
$20 \,\text{R}\, 3$
d
$22$
e
$21$

What is $82$ divided by $2?$

a
$41$
b
$42$
c
$47$
d
$45$
e
$43$

Harold cuts an 85 -inch long rope into 5 pieces of the same size. How long is each piece?

EXPLANATION

To find out how long each of the pieces is, we need to divide 85 by 5.

We start by writing down the question using long division notation:

5 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}

First, we consider the tens:

\color{blue}1
5 \!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 5 \color{lightgray}\downarrow
3 \color{lightgray}5

Divide: {\color{red}8} \div 5 = {\color{blue}1}\,\text{R}\,3
Write over tens: \color{blue}1
Multiply: 5 \times {\color{blue}1} = 5
Subtract: {\color{red}8} - 5 = 3
Bring down: 5

Next, we consider the ones:

1 \color{blue}7
5 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 5
\color{red}3 \color{red}5
-\!\!\!\!\!\!\! 3 5
\fbox{0}

Divide: {\color{red}35} \div 5 = {\color{blue}7}
Write over ones: \color{blue}7
Multiply: 5 \times {\color{blue}7} = 35
Subtract: {\color{red}35} - 35 = \fbox{0}

We've gone through all the digits in the number 85, so the division is done.

Therefore, 85 \div 5 = 17.

This means that each piece of rope is 17 inches long.

FLAG

Amy cut an $84$-inch long pipe into $7$ pieces of the same length. How long is each piece?

a
$12$ inches
b
$14$ inches
c
$11$ inches
d
$15$ inches
e
$10$ inches

Keith cuts a $54$-inch string into $2$ pieces of the same size. How long is each piece?

a
$27$ inches
b
$23$ inches
c
$29$ inches
d
$28$ inches
e
$25$ inches

If there is a remainder after using the standard algorithm, we write the remainder in the answer. To illustrate, let's find the remainder of 95\div 8\,.

We start by writing down the question using long division notation:

8 \!\!\require{enclose}\enclose{longdiv}{9 {\:\phantom{|}} 5}

First, we consider the tens:

\color{blue}1
8 \!\!\require{enclose}\enclose{longdiv}{{\color{red}9} {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 8 \color{lightgray}\downarrow
1 \color{lightgray}5

Divide: {\color{red}9} \div 8 = {\color{blue}1}\,\text{R}\,1
Write over tens: \color{blue}1
Multiply: 8 \times {\color{blue}1} = 8
Subtract: {\color{red}9} - 8 = 1
Bring down: 5

Next, we consider the ones:

1 \color{blue}1
8 \!\!\require{enclose}\enclose{longdiv}{9 {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 8
\color{red}1 \color{red}5
-\!\!\!\!\!\!\! 8
\fbox{7}

Divide: {\color{red}15} \div 8 = {\color{blue}1}\,\text{R}\,7
Write over ones: \color{blue}1
Multiply: 8 \times {\color{blue}1} = 8
Subtract: {\color{red}15} - 8 = \fbox{7}

We've gone through all the digits in the number 95, so the division is done. However, we still have a remainder of \color{blue}7 , so we include this in our final answer.

Therefore, 95 \div 8 = {\color{red}11}\,\text{R}\,{\color{blue}7}.

Here, \color{red}11 is called the quotient.

FLAG

From top to bottom, what are the missing digits in the following division problem?

\fbox{[math]\phantom{1}[/math]} 2
7 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}
-\!\!\! \fbox{[math]\phantom{7}[/math]}
\fbox{[math]\phantom{1}[/math]} 5
-\!\!\!\!\!\!\! 1 4
1

EXPLANATION

We start by writing down the question using long division notation:

7 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}

First, we consider the tens:

\color{blue}1
7 \!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 7 \color{lightgray}\downarrow
1 \color{lightgray}5

Divide: {\color{red}8} \div 7 = {\color{blue}1}\,\text{R}\,1
Write over tens: \color{blue}1
Multiply: 7 \times {\color{blue}1} = 7
Subtract: {\color{red}8} - 7 = 1
Bring down: 5

Next, we consider the ones:

1 \color{blue}2
7 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}
-\!\!\!\!\!\!\! 7
\color{red}1 \color{red}5
-\!\!\!\!\!\!\! 1 4
\fbox{1}

Divide: {\color{red}15} \div 7 = {\color{blue}2}\,\text{R}\,1
Write over ones: \color{blue}2
Multiply: 7 \times {\color{blue}2} = 14
Subtract: {\color{red}15} - 14 = \fbox{1}

We've gone through all the digits in the number 85, so the division is done. However, we still have a remainder of 1 , so we include this in our final answer.

Therefore, 85 \div 7 = 12\,\text{R}\,1.

The missing digits are 1 , 7 and 1 :

\fbox{1} 2
7 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 5}
-\!\!\! \fbox{7}
\fbox{1} 5
-\!\!\!\!\!\!\! 1 4
1

FLAG

From left to right, what are the missing digits in the following division problem?

$1$ $3$
$6$ $\!\!\require{enclose}\enclose{longdiv}{7 {\:\phantom{|}} 9}$
$-\!\!\!\!\!\!\!$ $6$
$\fbox{$\phantom{1}$}$ $\fbox{$\phantom{4}$}$
$-\!\!\!\!\!\!\!$ $1$ $8$
$1$

a
$2$ and $4$
b
$1$ and $9$
c
$3$ and $6$
d
$5$ and $3$
e
$1$ and $8$

From top to bottom, what are the missing digits in the following division problem?

$\fbox{$\phantom{0}$}$ $4$
$3$ $\!\!\require{enclose}\enclose{longdiv}{4 {\:\phantom{|}} 3}$
$-\!\!\!\!$ $\fbox{$\phantom{0}$}$
$\fbox{$\phantom{0}$}$ $3$
$-\!\!\!\!$ $1$ $2$
$1$

a
$1$, $4$, and $0$
b
$1$, $4$, and $1$
c
$1$, $3$, and $1$
d
$2$, $6$, and $2$
e
$1$, $3$, and $2$

Find the quotient and the remainder of 89\div 6.

EXPLANATION

We start by writing down the question using long division notation:

6 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 9}

First, we consider the tens:

\color{blue}1
6 \!\!\require{enclose}\enclose{longdiv}{{\color{red}8} {\:\phantom{|}} 9}
-\!\!\!\!\!\!\! 6 \color{lightgray}\downarrow
2 \color{lightgray}9

Divide: {\color{red}8} \div 6 = {\color{blue}1}\,\text{R}\,2
Write over tens: \color{blue}1
Multiply: 6 \times {\color{blue}1} = 6
Subtract: {\color{red}8} - 6 = 2
Bring down: 9

Next, we consider the ones:

1 \color{blue}4
6 \!\!\require{enclose}\enclose{longdiv}{8 {\:\phantom{|}} 9}
-\!\!\!\!\!\!\! 6
\color{red}2 \color{red}9
-\!\!\!\!\!\!\! 2 4
\fbox{5}

Divide: {\color{red}29} \div 6 = {\color{blue}4}\,\text{R}\,5
Write over ones: \color{blue}4
Multiply: 6 \times {\color{blue}4} = 24
Subtract: {\color{red}29} - 24 = \fbox{5}

We've gone through all the digits in the number 89, so the division is done. However, we still have a remainder of 5 , so we include this in our final answer.

Therefore, 89 \div 6 = 14\,\text{R}\,5.

FLAG

Find the quotient and the remainder of $95\div 8.$

a
$10\,\text{R}\,7$
b
$17\,\text{R}\,7$
c
$11\,\text{R}\,7$
d
$13\,\text{R}\,7$
e
$12\,\text{R}\,7$

Find the quotient and the remainder of $76\div 5.$

a
$18\,\textrm{R}\,1$
b
$16\,\textrm{R}\,1$
c
$17\,\textrm{R}\,1$
d
$15\,\textrm{R}\,1$
e
$14\,\textrm{R}\,1$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL