Finding the cube root of a number is the reverse of cubing a number. We express the cube root using the radical symbol \sqrt[3]{\phantom{x}}.

For example, the "cube root of 8 " equals \color{blue}2 since

{\color{blue}2}^3 = {\color{blue}2}\cdot {\color{blue}2}\cdot {\color{blue}2} = 8.

So, we write \sqrt[3]{8}={\color{blue}2}.

Some basic cube roots are as follows:

\begin{array}{} \sqrt[3]{0} &=& \sqrt[3]{{\color{blue}{0}}^3} &=& {\color{blue}0} \\[5pt] \sqrt[3]{1} &=& \sqrt[3]{{\color{blue}{1}}^3} &=& {\color{blue}1} \\[5pt] \sqrt[3]{8} &=& \sqrt[3]{{\color{blue}{2}}^3} &=& {\color{blue}2} \\[5pt] \sqrt[3]{27} &=& \sqrt[3]{{\color{blue}{3}}^3} &=& {\color{blue}3} \\[5pt] \sqrt[3]{64} &=& \sqrt[3]{{\color{blue}{4}}^3} &=& {\color{blue}4} \\[5pt] \sqrt[3]{125} &=& \sqrt[3]{{\color{blue}{5}}^3} &=& {\color{blue}5} \\[5pt] \sqrt[3]{1\,000} &=& \sqrt[3]{{\color{blue}{10}}^3} &=& {\color{blue}10} \\[5pt] \end{array}

A perfect cube is a number whose cube root is a whole number. So, the numbers

0,\qquad 1,\qquad 8,\qquad 27,\qquad 64,\qquad 125, \qquad 1\,000 are all perfect cubes. You need to remember them.

FLAG

What is \sqrt[3]{9^3}?

EXPLANATION

Since the number under the cube root ( \sqrt[3]{\phantom{x}} ) is already written as a cube, we obtain the answer instantly: \sqrt[3]{9^3} = 9

FLAG

$\sqrt[3]{8^3}=$

a
$2$
b
$4$
c
$-2$
d
$8$
e
$-8$

$\sqrt[3]{(-75)^3}=$

a
$-75$
b
$-5$
c
$25$
d
$-15$
e
$75$

$\sqrt[3]{\left(\dfrac{1}{5}\right)^3}=$

a
$\dfrac{1}{125}$
b
$5$
c
$\dfrac{1}{5}$
d
$\dfrac{1}{15}$
e
$\dfrac{1}{25}$

Calculate the value of \sqrt[3]{\dfrac{1}{64}}.

EXPLANATION

First, notice that the numbers 1 and 64 are both perfect cubes.

So, to determine the value of \sqrt[3]{\dfrac{1}{64}}, we express \dfrac{1}{64} as a perfect cube:

\begin{align*} \sqrt[3]{\dfrac{1}{64}} &= \\[5pt] \sqrt[3]{\dfrac{1^3}{4^3}} &= \\[5pt] \sqrt[3]{\dfrac{1\cdot 1\cdot 1}{4\cdot 4\cdot 4}} &= \\[5pt] \sqrt[3]{\dfrac{1}{4}\cdot \dfrac{1}{4}\cdot \dfrac{1}{4}}&=\\[5pt] \sqrt[3]{\left(\dfrac{1}{4}\right)^3} &=\\[5pt] \dfrac{1}{4} \end{align*}

FLAG

$\sqrt[3]{125} = $

a
$15$
b
$-5$
c
$25$
d
$5$
e
$-25$

$\sqrt[3]{\dfrac{1}{8}}=$

a
$\dfrac{1}{24}$
b
$\dfrac{3}{2}$
c
$\dfrac{1}{2}$
d
$\dfrac{1}{4}$
e
$\dfrac{3}{8}$

$\sqrt[3]{\dfrac{27}{64}}=$

a
$\dfrac{9}{4}$
b
$\dfrac{3}{2}$
c
$\dfrac{3}{16}$
d
$\dfrac{3}{4}$
e
$\dfrac{9}{8}$

Unlike the square root, it is possible to find the cube root of a negative number.

For example, \sqrt[3]{-8}={\color{blue}{-2}} because

-8 = ({\color{blue}{-2}})^3 = ({\color{blue}{-2}})\cdot ({\color{blue}{-2}})\cdot ({\color{blue}{-2}}).

Some basic cube roots of negative numbers are as follows: \begin{array}{} \sqrt[3]{-1} &=& \sqrt[3]{({\color{blue}{-1}})^3} &=& {\color{blue}-1} \\[5pt] \sqrt[3]{-8} &=& \sqrt[3]{({\color{blue}{-2}})^3} &=& {\color{blue}-2} \\[5pt] \sqrt[3]{-27} &=& \sqrt[3]{({\color{blue}{-3}})^3} &=& {\color{blue}-3} \\[5pt] \sqrt[3]{-64} &=& \sqrt[3]{({\color{blue}{-4}})^3} &=& {\color{blue}-4} \\[5pt] \sqrt[3]{-125} &=& \sqrt[3]{({\color{blue}{-5}})^3} &=& {\color{blue}-5} \\[5pt] \sqrt[3]{-1\,000} &=& \sqrt[3]{({\color{blue}{-10}})^3} &=& {\color{blue}-10} \\[5pt] \end{array}

Note that the numbers

-1,\qquad -8,\qquad -27,\qquad -64,\qquad -125, \qquad -1\,000

are all perfect cubes.

FLAG

Calculate \sqrt[3]{-125}.

EXPLANATION

First, notice that the number 125 is a perfect cube.

So, to determine the value of \sqrt[3]{-125}, we express -125 as a perfect cube:

\begin{align*} \sqrt[3]{-125} & = \\[5pt] \sqrt[3]{(-5) \cdot (-5) \cdot (-5)} & = \\[5pt] \sqrt[3]{(-5)^3} & = \\[5pt] -5 & \end{align*}

FLAG

$\sqrt[3]{-8}=$

a
$-8$
b
$-4$
c
$-2$
d
$4$
e
$2$

$\sqrt[3]{-\dfrac{1}{8}} = $

a
$\dfrac{2}{3}$
b
$\dfrac{1}{2}$
c
$-\dfrac{3}{2}$
d
$-\dfrac{1}{4}$
e
$-\dfrac{1}{2}$

$\sqrt[3]{-\dfrac{125}{8}}=$

a
$\dfrac{5}{4}$
b
$-\dfrac{4}{5}$
c
$-\dfrac{5}{2}$
d
$\dfrac{25}{2}$
e
$-\dfrac{5}{4}$

Let's calculate (\sqrt[3]{64})^3 by performing each operation one step at a time: \left(\sqrt[3]{\color{blue}64}\right)^3 = \left(\sqrt[3]{{\color{red}4}^3}\right)^3 = {\color{red}4}^3 = {\color{blue}64} Notice that the cubing the cube root gives the number under the cube root: \left( \sqrt[3]{64} \right)^3 = 64

This result holds in general. If \color{blue}\square is any number, then \left(\sqrt[3]{\color{blue}\square}\right)^3 = {\color{blue}\square}.

The cube and the cube root cancel each other out, and we're left with the number that we started with.

FLAG

Find the value of (\sqrt[3]{216})^3.

EXPLANATION

The cube and the cube root cancel each other out. So, we have (\sqrt[3]{216})^3 = 216.

FLAG

$(\sqrt[3]{125})^3=$

a
$5$
b
$-12$
c
$-125$
d
$-5$
e
$125$

$(\sqrt[3]{-125})^3=$

a
$5$
b
$-5$
c
$3$
d
$125$
e
$-125$

We can think of the cube root geometrically. For instance, let's represent the number 8 by a collection of eight items:

Now, we can pile them up in the form of a cube where each side is equal to \sqrt[3]{8}={\color{blue}2}\mathbin{:}

FLAG
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL