To cube a number means to multiply that number by itself and then multiply the result by the original number once more.

For example, to "cube 2 ", we need to multiply 2 by 2 to make 4, and then multiply this result by 2 once more. We write the "cube of 2 " as 2^3, so we have 2^3 = \underbrace{2\cdot 2}_{\large 4} \cdot 2 = 4 \cdot 2 = 8.

We would then say that "the cube of 2 is 8 ". We could also say " 2 cubed equals 8 ".

The number {\color{blue}3} in the expression 2^{\color{blue}3} is called the power (or exponent).

The act of cubing a number can be represented geometrically. For example, let's start by representing the number 2 with the following collection of two items:

Then we can picture 2^3 by creating a bigger shape (called a cube) with length, width and height all equal to 2\mathbin{:}

There are 8 items in total in our big cube (one little cube is hiding behind the others), indicating that 2^3=8.

Clearly, 1^3=1\cdot1\cdot1={\color{blue}1}. The next few first basic cubes are shown below:

2^3=2 \cdot 2 \cdot 2={\color{blue}8} 3^3=3 \cdot 3 \cdot 3={\color{blue}27} 4^3=4 \cdot 4 \cdot 4={\color{blue}64}

The cubes of our usual counting numbers are called cube numbers or perfect cubes. We can write them as follows: 1^3, 2^3, 3^3, 4^3, 5^3, 6^3, \ldots \qquad \text{or} \qquad {\color{blue}1}, {\color{blue}8}, {\color{blue}27}, {\color{blue}64}, {\color{blue}125}, {\color{blue}216}, \ldots

FLAG

What is the value of 70^3?

EXPLANATION

To work out 70^3, we multiply 70 by itself and then multiply the result by 70 once more:

\begin{align*} 70^3 &= 70\cdot 70\cdot 70\\[5pt] &=4\,900\cdot 70&\\[5pt] &=343\,000 \end{align*}

FLAG

$8^3=$

a
$512$
b
$215$
c
$64$
d
$24$
e
$32$

$30^3=$

a
$81\,000$
b
$18\,000$
c
$3\,000$
d
$27\,000$
e
$9\,000$

$11^3=$

a
$1\,331$
b
$-33$
c
$33$
d
$121$
e
$-121$

Cubing a negative number always results in another negative number.

This is because a negative times a negative gives a positive value, and then a positive times a negative is a negative again: \begin{align*} \mathbf{\color{red}(-)} \:\mathbf{\cdot}\: \mathbf{\color{red}(-)} \:\mathbf{\cdot}\: \mathbf{\color{red}(-)} \:=\: \underbrace{\mathbf{\color{red}(-)} \:\mathbf{\cdot}\: \mathbf{\color{red}(-)}}_{\mathbf{\color{blue}(+)}} \:\mathbf{\cdot}\: \mathbf{\color{red}(-)} \:=\: \mathbf{\color{blue}(+)} \:\mathbf{\cdot}\: \mathbf{\color{red}(-)} \:=\: \mathbf{\color{red}(-)} \end{align*}

For example, ({\color{red}-5})^3 = \underbrace{({\color{red}-5}) \cdot ({\color{red}-5})}_{\large {\color{blue}25}} \cdot ({\color{red}-5}) = {\color{blue}25} \cdot ({\color{red}-5}) = {\color{red}-125}.

FLAG

Calculate the value of \left(-13\right)^3.

EXPLANATION

To work out \left(-13\right)^3, we multiply -13 by itself and then multiply the result by -13 again: \begin{align*} (-13)^3 &= \overbrace{(-13) \cdot (-13)}^{169} \cdot (-13) \\[5pt] &=169 \cdot (-13) \\[5pt] &= -2\,197 \end{align*}

FLAG

$\left(-2\right)^3=$

a
$4$
b
$-4$
c
$8$
d
$-6$
e
$-8$

$(-10)^3=$

a
$100$
b
$-1\,000$
c
$-100$
d
$1\,000$
e
$-30$

$(-14)^3=$

a
$196$
b
$-196$
c
$2\,744$
d
$-2\,744$
e
$-14$

Find the value of \dfrac{3}{5} cubed.

EXPLANATION

To work out \left(\dfrac{3}{5}\right)^3, we multiply \dfrac{3}{5} by itself and then multiply the result by \dfrac{3}{5} again:

\begin{align*} \left(\dfrac{3}{5}\right)^3 &= \dfrac{3}{5} \cdot \dfrac{3}{5} \cdot \dfrac{3}{5} \\[5pt] &= \dfrac{3 \cdot 3 \cdot 3}{5 \cdot 5 \cdot 5}\\[5pt] &= \dfrac{27}{125} \end{align*}

FLAG

$\left(\dfrac{1}{3}\right)^3=$

a
$\dfrac{1}{9}$
b
$\dfrac{1}{3}$
c
$\dfrac{1}{6}$
d
$\dfrac{1}{27}$
e
$\dfrac{1}{2}$

$\left(\dfrac{2}{3}\right)^3=$

a
$\dfrac{8}{9}$
b
$\dfrac{6}{9}$
c
$\dfrac{8}{27}$
d
$\dfrac{4}{27}$
e
$\dfrac{2}{27}$

What is the cube of (-0.5)?

EXPLANATION

To work out \left(-0.5\right)^3, we multiply -0.5 by itself and then multiply the result by -0.5 once more:

\begin{align*} (-0.5)^3 &= \overbrace{(-0.5) \cdot (-0.5)}^{0.25} \cdot (-0.5) \\[5pt] &=0.25 \cdot (-0.5) \\[5pt] &= -0.125 \end{align*}

FLAG

Expressed as a decimal in its simplest form, $(0.4)^3 =$

a
b
c
d
e

$(1.5)^3=$

a
$1.5$
b
$0.375$
c
$2.25$
d
$2.75$
e
$3.375$

Expressed as a decimal in its simplest form, $(-1.6)^3=$

a
b
c
d
e
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL