To evaluate the expression 3+x for x={\color{blue}2} , we replace x with \color{blue}2 in the expression and simplify: \begin{align*} 3+x &= \\[5pt] 3+({\color{blue}2}) &= \\[5pt] 3+2 &= \\[5pt] 5 & \end{align*}

FLAG

Evaluate 11p-2 for p=4.

EXPLANATION

Replacing p with \color{blue}4 in the expression, we get \eqalign{ 11p-2 &= \\ 11({\color{blue}4})-2 &= \\ 44-2 &= \\ 42 . }

FLAG

If $u = 3,$ then $6 + 2u=$

a
$0$
b
$3$
c
$12$
d
$-6$
e
$6$

If $y = 2,$ then $4y - 13=$

a
$-5$
b
$-18$
c
$5$
d
$18$
e
$-21$

If $k = 4,$ then $-3k + 20=$

a
$17$
b
$12$
c
$8$
d
$20$
e
$-12$

Evaluate 2-\dfrac{u}{4} for u=\dfrac43.

EXPLANATION

Replacing u with \dfrac43 in the expression, we get

\begin{align} 2-\dfrac{u}{4} &= \\[5pt] 2-\dfrac{1}{4}u &= \\[5pt] 2-\dfrac{1}{4}\cdot \dfrac43 &= \\[5pt] 2-\dfrac{4}{12} &= \\[5pt] 2-\dfrac{1}{3} &= \\[5pt] \dfrac{6-1}{3} &= \\[5pt] \dfrac{5}{3}. \end{align}

FLAG

Evaluate $4 + \dfrac{u}3$ for $u = 2.$

a
$3 $
b
$\dfrac{1}3 $
c
$9 $
d
$\dfrac{14}3 $
e
$\dfrac{7}3 $

Evaluate $\dfrac{u}{2}-2$ for $u=5.$

a
$-2$
b
$\dfrac{1}{2}$
c
$1$
d
$\dfrac{1}{4}$
e
$-\dfrac{1}{2}$

Evaluate $3-\dfrac{m}{3}$ for $m=6.$

a
$5$
b
$0$
c
$1$
d
$-5$
e
$-1$

The usual order of operations (PEMDAS) applies when evaluating expressions. So when an algebraic expression contains parentheses (\ldots) , we calculate what's inside the parentheses first.

For example, we evaluate 6 - (2x+3) at x=3 , as follows:

\begin{align*} 6 - (2x+3) &=\\ 6 - (2\cdot 3+3) &=\\ 6 - (6+3) &=\\ 6-9&=\\ -3. \end{align*}

FLAG

Evaluate 2(3 x-1) +2 for x=-3.

EXPLANATION

We replace x with -3 in the expression and evaluate the parentheses first:

\begin{align*} 2(3x-1) +2 &=\\ 2(3\cdot (-3) -1 ) + 2 &=\\ 2(-9-1) +2 &=\\ 2(-10) +2 &=\\ -20+2 &=\\ -18 \end{align*}

FLAG

Evaluate $5(n - 1)$ for $n=-1.$

a
$-5$
b
$10$
c
$-10$
d
$0$
e
$5$

Evaluate $7+(3+2h)$ for $h=2.$

a
$4$
b
$14$
c
$24$
d
$10$
e
$12$

Evaluate $1+(2-3x)$ for $x=-1.$

a
$3$
b
$2$
c
$6$
d
$-1$
e
$0$

If an expression contains more than one variable, we evaluate it using the same procedure, replacing each variable with the appropriate value.

For example, to find the value of 2b + \dfrac{1}{2}a when a=-2 and b=3, we replace a with -2 and b with 3\mathbin{:}

\begin{align*} 2b + \dfrac{1}{2}a&=\\ 2\cdot 3 + \dfrac{1}{2}\cdot (-2)&=\\ 6 - 1&=\\ 5 \end{align*}

FLAG

Find the value of x - \dfrac{3}{2}y when x=2 and y=-2.

EXPLANATION

Replacing x with 2 and y with -2 in the expression, we get

\begin{align*} x - \dfrac{3}{2}y&=\\[5pt] 2 - \dfrac{3}{2}\cdot (-2)&=\\[5pt] 2 + \left(-\dfrac{3}{2}\right)\cdot (-2)&=\\[5pt] 2+3&=\\[5pt] 5 . \end{align*}

FLAG

If $t=-2$ and $l=3$, then $2t - l.$

a
$7$
b
$5$
c
$-5$
d
$-1$
e
$-7$

If $x=0$ and $y=0,$ then $5x -y + 3=$

a
$3$
b
$5$
c
$0$
d
$-3$
e
$8$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL