Processing math: 100%

As we know already, to evaluate numerical expressions with a mix of different operations, we follow the order of operations (PEMDAS).

The same rules apply to numerical expressions with zero and negative exponents. To demonstrate, let's compute the value of (-3)^0 +2^2 \div 2.

To evaluate the given expression, we use PEMDAS.

Notice that \left(-3\right)^{0}=1. So, we obtain

(3)0+22÷2=1+22÷2=1+4÷2=1+2=3.

FLAG

Calculate 10\div 5^0 + (3^2-5).

EXPLANATION

To evaluate the given expression, we use PEMDAS.

First, we compute the expression inside the parentheses:

10÷50+(95)=10÷50+4

Next, notice that 5^0=1. So, we obtain:

10÷50+4=10÷1+4=10+4=14

FLAG

82÷16+110=

a
8
b
5
c
4
d
17
e
15

(3)2+(5)×20=

a
4
b
4
c
1
d
14
e
1

(43)0÷(1+32)3.5=

a
3.5
b
3.4
c
2.7
d
3.2
e
2.9

What is the value of \dfrac{4}{3} \times (-5+3)^{-2} + \dfrac{2}{3} ?

EXPLANATION

To evaluate the given expression, we use PEMDAS.

First, we compute the expression inside the parentheses:

\dfrac{4}{3} \times ({\color{red}-5} + {\color{red}3})^{-2} + \dfrac{2}{3} = \dfrac{4}{3} \times ({\color{red}-2})^{-2} + \dfrac{2}{3}

Next, notice that (-2)^{-2}=\dfrac{1}{(-2)^2} = \dfrac{1}{4}. So, we obtain:

43×(2)2+23=43×14+23=4×13×4+23=4×13×4+23=13+23=1

FLAG

52÷15=

a
15
b
125
c
5
d
15
e
25

22÷(141)=

a
16
b
6
c
3
d
13
e
13

Calculate 58×3(810)3.

a
12
b
8
c
12
d
2
e
2

Find the value of 2 + \left(-4\right)^{-2} \div \left( 1.5 + \dfrac{2}{15} \right)^0.

EXPLANATION

To evaluate the given expression, we use PEMDAS.

Any number raised to the power of 0 equals 1. So, we have

\left( 1.5 + \dfrac{2}{15} \right) ^0 = 1.

Next, we evaluate the negative exponent and get

\left(-4\right)^{-2} = \dfrac{1}{(-4)^2} = \dfrac{1}{16}.

Substituting all these values into the expression, we obtain:

2+(4)2÷(1.5+215)0=2+116÷1=2+116=3216+116=3316

FLAG

Calculate (58)0×(3.51.5)3.

a
12
b
2
c
8
d
18
e
14

18÷(13)2+(11010.01)0=

a
32
b
2
c
3
d
43
e
1

Calculate (87116)011×(12)3.

a
121
b
89
c
89
d
87
e
87
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL