Let's take a look at the following addition problem:

132 + 46

In this case, we're adding a two-digit number to a three-digit number. To do this, we use the standard algorithm.

The first step is to write the numbers in the usual way, where ones are aligned over ones, tens over tens, and hundreds over hundreds:

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & & & \end{array}

Next, we proceed by adding the numbers in each place value (from right to left) starting from the ones:

Step 1. Adding the ones, we get {\color{blue}2} + {\color{blue}6} = {\color{blue}8}{:}

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\! \\ \hline & & & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \end{array}

Step 2. Adding the tens, we get {\color{blue}3 } + {\color{blue}4} = {\color{blue}7}{:}

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Step 3. Notice that 46 has no hundred digit. Therefore, we place a \color{red}0 in its hundreds place:

\begin{array}{cccccccc} & & \!\!\!\! {\color{black}1} \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{red}0} \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & \!\!\!\! \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Then, adding the hundreds, we get {\color{blue}1} + {\color{blue}0} = {\color{blue}1}{:}

\begin{array}{cccccccc} & & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Therefore, 132 + 46 = 178.

FLAG

Tom and Jerry are running a race that takes place over several days. Tom runs a total of 122 kilometers, while Jerry runs 36 kilometers more than Tom. How many kilometers did Jerry run?

EXPLANATION

To find the number of kilometers Jerry ran, we need to calculate the value of

122 + 36.

First, we line up our numbers (ones over ones, tens over tens, hundreds over hundreds):

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & & & \end{array}

Next, we proceed by adding the numbers in each place value (from right to left):

Step 1. Adding the ones, {\color{blue}2} + {\color{blue}6} = {\color{blue}8}{:}

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\! \\ \hline & & & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \end{array}

Step 2. Adding the tens, {\color{blue}2 } + {\color{blue}3} = {\color{blue}5}{:}

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & & \!\!\!\! {\color{blue}5} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Step 3. Adding the hundreds, {\color{blue}1} + {\color{blue}0} = {\color{blue}1}{:}

\begin{array}{cccccccc} & & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Therefore, Jerry ran 158 kilometers.

FLAG

$272+25 =$

a
$395$
b
$295$
c
$297$
d
$277$
e
$197$

$65+323 =$

a
$387$
b
$398$
c
$386$
d
$388$
e
$378$

Now, let's calculate the following sum:

119 + 71

To use the standard algorithm, we first line up our numbers (ones over ones, tens over tens, hundreds over hundreds):

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \hline & & & & \end{array}

Next, we proceed by adding the numbers in each place value (from right to left):

Step 1. Adding the ones, we get {\color{blue}9} + {\color{blue}1} = {\color{red}1}{\color{blue}0}. However, we can't write {\color{red}1}{\color{blue}0} in the ones column. So, we write {\color{blue}0} below the ones and carry {\color{red}1} to the tens:

\begin{array}{cccccccc} & & & \!\!\!\! {\color{red}1} \!\!\!\! & \\ & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! {\color{blue}9} \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \\ \hline & & & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}0} \!\!\!\! \end{array}

Step 2. Adding the tens, we get {\color{blue}1} + {\color{blue}1} + {\color{blue}7} = {\color{blue}9}{:}

\begin{array}{cccccccc} & & & \!\!\!\! {\color{blue}1} \!\!\!\! & \\ & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \hline & & & \!\!\!\! {\color{blue}9} \!\!\!\!& \!\!\!\! 0 \!\!\!\! \end{array}

Step 3. Adding the hundreds, we get {\color{blue}1} + {\color{blue}0} = {\color{blue}1}{:}

\begin{array}{cccccccc} & & & \!\!\!\! 1 \!\!\!\! & \\ & & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \hline & & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \end{array}

Therefore, 119 + 71 = 190.

FLAG

What is 51 + 267?

EXPLANATION

First, we line up our numbers (ones over ones, tens over tens, hundreds over hundreds):

\begin{array}{cccccccc} & & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & & & & \end{array}

Next, we proceed by adding the numbers in each place value (from right to left):

Step 1. Adding the ones, {\color{blue}1} + {\color{blue}7} = {\color{blue}8}{:}

\begin{array}{cccccccc} & & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\! \\ \hline & & & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \end{array}

Step 2. Adding the tens, {\color{blue}5} + {\color{blue}6} = {\color{red}1}{\color{blue}1}. We write {\color{blue}1} below the tens and carry {\color{red}1} to the hundreds:

\begin{array}{cccccccc} & & \!\!\!\! {\color{red}1} \!\!\!\!& & \\ & & & \!\!\!\! {\color{blue}5} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! {\color{blue}6} \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & & & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Step 3. Adding the hundreds, {\color{blue}1} + {\color{blue}0} + {\color{blue}2} = {\color{blue}3}{:}

\begin{array}{cccccccc} & & \!\!\!\! {\color{blue}1} \!\!\!\!& & \\ & & \!\!\!\! {\color{blue}0} \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}2} \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & & \!\!\!\! {\color{blue}3} \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Therefore, 51 + 267 = 318.

FLAG

$27+714=$

a
$841$
b
$730$
c
$741$
d
$830$
e
$731$

$152+53 =$

a
$105$
b
$2,005$
c
$195$
d
$205$
e
$1,105$

What is 89 + 982?

EXPLANATION

First, we line up our numbers (ones over ones, tens over tens, hundreds over hundreds):

\begin{array}{cccccccc} & & & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 9 \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & & & & \end{array}

Next, we proceed by adding the numbers in each place value (from right to left):

Step 1. Adding the ones, {\color{blue}9} + {\color{blue}2} = {\color{red}1}{\color{blue}1}. We write {\color{blue}1} below the ones and carry {\color{red}1} to the tens:

\begin{array}{cccccccc} & & & \!\!\!\! {\color{red}1} \!\!\!\! & \\ & & & \!\!\!\! 8 \!\!\!\!& \!\!\!\! {\color{blue}9} \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 9 \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\! \\ \hline & & & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \end{array}

Step 2. Adding the tens, {\color{blue}1} + {\color{blue}8 } + {\color{blue}8} = {\color{red}1}{\color{blue}7}. We write {\color{blue}7} below the tens and carry {\color{red}1} to the hundreds:

\begin{array}{cccccccc} & & \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \\ & & & \!\!\!\! {\color{blue}8} \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 9 \!\!\!\! & \!\!\!\! {\color{blue}8} \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & & & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \end{array}

Step 3. Adding the hundreds, {\color{blue}1} + {\color{blue}0} + {\color{blue}9} = {\color{red}1}{\color{blue}0}. We write {\color{blue}0} below the hundreds and carry {\color{red}1} to the thousands:

\begin{array}{cccccccc} & \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \\ & & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}9} \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \end{array}

Step 4. Adding the thousands, {\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}

\begin{array}{cccccccc} & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \\ & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 0 \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 9 \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 0 \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \end{array}

Therefore, 89 + 982 = 1,071.

FLAG

$65+387=$

a
$442$
b
$352$
c
$342$
d
$412$
e
$452$

$928+96 =$

a
$1,934$
b
$1,034$
c
$1,134$
d
$1,024$
e
$924$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL