We can use place value to add two-digit whole numbers easily.
As an example, let's find the following sum:
24+35
First, we line up our numbers (ones over ones and tens over tens ):
tens
ones
\color{red}2
\color{blue}4
\color{red}3
\color{blue}5
Next, we proceed by adding the numbers in each place value (from right to left) and writing the results below:
Step 1. Adding the ones, we get
{\color{blue}4} + {\color{blue}5} = {\color{blue}9}{:}
tens
ones
\color{red}2
\color{blue}4
\color{red}3
\color{blue}5
\color{blue}9
Step 2. Adding the tens, we get
{\color{red}2} + {\color{red}3} = {\color{red}5}{:}
tens
ones
\color{red}2
\color{blue}4
\color{red}3
\color{blue}5
\color{red}5
\color{blue}9
Therefore, we conclude that
24+35 = 59.
Drawing place value charts each time we want to add a pair of numbers isn't very convenient. For this reason, we usually follow a simplified process called the standard algorithm .
Let's once again consider the following sum:
24+35
First, we line up our numbers as follows: (ones over ones, and tens over tens):
\begin{array}{cccccccc}
& & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!
\end{array}
Notice that we've also drawn a horizontal line. This is where we'll write our answer.
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, we get
{\color{blue}4} + {\color{blue}5} = {\color{blue}9}{:}
\begin{array}{cccccccc}
& & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}4} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}9} \!\!\!\!
\end{array}
Step 2. Adding the tens, we get
{\color{blue}2} + {\color{blue}3} = {\color{blue}5}{:}
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}5} \!\!\!\!& \!\!\!\! 9 \!\!\!\!
\end{array}
Therefore,
24 + 35 = 59.
Robert weighs
37
pounds, and Milly weighs
41
pounds. What is the combined weight of these two children?
To find the combined weight, we need to calculate the value of
37+41.
First, we line up our numbers (ones over ones and tens over tens ):
\begin{array}{cccccccc}
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!
\end{array}
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones,
{\color{blue}7} + {\color{blue}1} = {\color{blue}8}{:}
\begin{array}{cccccccc}
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\!
\end{array}
Step 2. Adding the tens,
{\color{blue}3 } + {\color{blue}4} = {\color{blue}7}{:}
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 8 \!\!\!\!
\end{array}
Therefore,
37 + 41 = 78.
So, the combined weight of the children is
78
pounds.
a
$70$
b
$92$
c
$76$
d
$80$
e
$86$
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}1} + {\color{blue}5} = {\color{blue}6}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}4 } + {\color{blue}3} = {\color{blue}7}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 6 \!\!\!\!
\end{array}
\]
Therefore, $41 + 35 = 76.$
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}6} + {\color{blue}2} = {\color{blue}8}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 6 \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}2 } + {\color{blue}6} = {\color{blue}8}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}6} \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}8} \!\!\!\!& \!\!\!\! 8 \!\!\!\!
\end{array}
\]
Therefore, $26 + 62 = \bbox[3pt,Gainsboro]{\color{blue}88}.$
Mary bought some candy for her daughter's birthday party. She bought $35$ mint candies and $41$ chocolate candies.
How many candies did she buy altogether?
a
$76$ candies
b
$126$ candies
c
$66$ candies
d
$46$ candies
e
$74$ candies
To find the number of candies Mary bought, we need to calculate the value of
\[
35 + 41.
\]
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}5} + {\color{blue}1} = {\color{blue}6}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}3} + {\color{blue}4} = {\color{blue}7}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 6 \!\!\!\!
\end{array}
\]
So, $35+41 = 76.$
Therefore, Mary bought a total of $76$ candies.
Let's now calculate the following sum using place value charts:
37+26
First, we line up our numbers (ones over ones, and tens over tens), as before:
tens
ones
\color{red}3
\color{blue}7
\color{red}2
\color{blue}6
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, we get
{\color{blue}7} + {\color{blue}6} = {\color{red}1}{\color{blue}3}.
Now, notice that
{\color{red}1}{\color{blue}3} = \textrm{[math]\color{red}1[/math] ten} + \textrm{[math]\color{blue}3[/math] ones}.
So, we write
\color{blue}3
below the ones and carry
\color{red}1
to the tens . Let's write this additional
\color{red}1
over the tens column.
\color{red}1
tens
ones
\color{red}3
\color{blue}7
\color{red}2
\color{blue}6
\color{blue}3
Step 2. Adding the tens, we get
{\color{red}1} + {\color{red}3} + {\color{red}2} = {\color{red}6}
(notice that we also add the
\color{red}1
carried from the previous step):
\color{red}1
tens
ones
\color{red}3
\color{blue}7
\color{red}2
\color{blue}6
\color{red}6
\color{blue}3
Therefore,
37+26 = 63.
Let's now solve the same problem using the standard algorithm.
Once again, we consider the following sum:
37+26
To use the standard algorithm, we first line up our numbers (ones over ones, and tens over tens):
\begin{array}{cccccccc}
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!
\end{array}
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, we get
{\color{blue}7} + {\color{blue}6} = {\color{red}1}{\color{blue}3}.
We write
{\color{blue}3}
below the ones and carry
{\color{red}1}
to the tens :
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}3} \!\!\!\!
\end{array}
Step 2. Adding the tens, we get
{\color{blue}1} + {\color{blue}3} + {\color{blue}2} = {\color{blue}6}{:}
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}6} \!\!\!\!& \!\!\!\! 3 \!\!\!\!
\end{array}
Therefore,
37 + 26 = 63.
The regular time of a particular soccer game lasted
92
minutes, and extra time lasted
33
minutes. How long did the game last in total?
To find the combined time, we need to calculate the value of
92 + 33.
First, we line up our numbers (ones over ones and tens over tens ):
\begin{array}{cccccccc}
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!
\end{array}
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones,
{\color{blue}2} + {\color{blue}3} = {\color{blue}5}{:}
\begin{array}{cccccccc}
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! {\color{blue}3} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\!
\end{array}
Step 2. Adding the tens,
{\color{blue}9} + {\color{blue}3} = {\color{red}1}{\color{blue}2}.
We write
{\color{blue}2}
below the tens and carry
{\color{red}1}
to the hundreds :
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & & \\
& & \!\!\!\! {\color{blue}9} \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}3} \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 5 \!\!\!\!
\end{array}
Step 3. Adding the hundreds,
{\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\!
\end{array}
Therefore, the game lasted
125
minutes.
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}7} + {\color{blue}9} = {\color{red}1}{\color{blue}6}.$ We write ${\color{blue}6}$ below the ones and carry ${\color{red}1}$ to the tens :
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}9} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}6} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}1} + {\color{blue}4} + {\color{blue}2} = {\color{blue}7}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 6 \!\!\!\!
\end{array}
\]
Therefore, $47 + 29 = \bbox[3pt,Gainsboro]{\color{blue}76}.$
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}3} + {\color{blue}4} = {\color{blue}7}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! {\color{blue}3} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! {\color{blue}4} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}9} + {\color{blue}7} = {\color{red}1}{\color{blue}6}.$ We write ${\color{blue}6}$ below the tens and carry ${\color{red}1}$ to the hundreds :
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & & \\
& & \!\!\!\! {\color{blue}9} \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}6} \!\!\!\!& \!\!\!\! 7 \!\!\!\!
\end{array}
\]
Step 3. Adding the hundreds, ${\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}$
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 7 \!\!\!\!
\end{array}
\]
Therefore, $93 + 74 = \bbox[3pt,Gainsboro]{\color{blue}167}.$
Peter has $18$ lemon candies while Angela has $25$ strawberry candies. Therefore, they have
To find out how many candies Peter and Angela have in total, we need to calculate the value of
\[
11 + 19.
\]
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}8} + {\color{blue}5} = {\color{red}1}{\color{blue}3}.$ We write ${\color{blue}3}$ below the ones and carry ${\color{red}1}$ to the tens :
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 1 \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}3} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}1} + {\color{blue}1} + {\color{blue}2} = {\color{blue}4}{:}$
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}2} \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 3 \!\!\!\!
\end{array}
\]
Therefore, $18 + 25 =43.$
So, Peter and Angela have a total of $\bbox[3pt,Gainsboro]{\color{blue}43}$ candies.
First, we line up our numbers (ones over ones and tens over tens ):
\begin{array}{cccccccc}
& & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!
\end{array}
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones,
{\color{blue}8} + {\color{blue}5} = {\color{red}1}{\color{blue}3}.
We write
{\color{blue}3}
below the ones and carry
{\color{red}1}
to the tens :
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 5 \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! {\color{blue}5} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}3} \!\!\!\!
\end{array}
Step 2. Adding the tens,
{\color{blue}1} + {\color{blue}5} + {\color{blue}5} = {\color{red}1}{\color{blue}1}.
We write
{\color{blue}1}
below the tens and carry
{\color{red}1}
to the hundreds :
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}5} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}5} \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 3 \!\!\!\!
\end{array}
Step 3. Notice that neither
58
nor
55
have a hundreds digit. Therefore, we place
\color{red}0
in their hundreds places:
\begin{array}{cccccccc}
& \!\!\!\! 1 \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \\
& \!\!\!\! {\color{red}0} \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{red}0} \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& \!\!\!\! \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 3 \!\!\!\!
\end{array}
Then, adding the hundreds, we get
{\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 5 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 3 \!\!\!\!
\end{array}
Therefore,
58 + 55 = 113.
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}4} + {\color{blue}8} = {\color{red}1}{\color{blue}2}.$ We write ${\color{blue}2}$ below the ones and carry ${\color{red}1}$ to the tens :
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 9 \!\!\!\!& \!\!\!\! {\color{blue}4} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}2} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}1} + {\color{blue}9} + {\color{blue}4} = {\color{red}1}{\color{blue}4}.$ We write ${\color{blue}4}$ below the tens and carry ${\color{red}1}$ to the hundreds :
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}9} \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}4} \!\!\!\!& \!\!\!\! 2 \!\!\!\!
\end{array}
\]
Step 3. Adding the hundreds, ${\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}$
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! {\color{black}1} \!\!\!\! & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 2 \!\!\!\!
\end{array}
\]
Therefore, $94 + 48 = \bbox[3pt,Gainsboro]{\color{blue}142}.$
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}7} + {\color{blue}4} = {\color{red}1}{\color{blue}1}.$ We write ${\color{blue}1}$ below the ones and carry ${\color{red}1}$ to the tens :
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 1 \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 9 \!\!\!\!& \!\!\!\! {\color{blue}4} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}1} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}1} + {\color{blue}1} + {\color{blue}9} = {\color{red}1}{\color{blue}1}.$ We write ${\color{blue}1}$ below the tens and carry ${\color{red}1}$ to the hundreds :
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}9} \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 1 \!\!\!\!
\end{array}
\]
Step 3. Adding the hundreds, ${\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}$
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! {\color{black}1} \!\!\!\! & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 9 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 1 \!\!\!\!
\end{array}
\]
Therefore, $17 + 94 = \bbox[3pt,Gainsboro]{\color{blue}111}.$
Dominic and his sister Margaret travel together to visit their parents. Dominic drives the car for $88$ miles, and then Margaret drives the remaining $79$ miles. Therefore, they drove a total of
To find the number of miles Dominic and Margaret drove in total, we need to calculate the value of
\[
88 + 79.
\]
First, we line up our numbers (ones over ones and tens over tens ):
\[
\begin{array}{cccccccc}
& & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\
\hline
& & & &
\end{array}
\]
Next, we proceed by adding the numbers in each place value (from right to left):
Step 1. Adding the ones, ${\color{blue}8} + {\color{blue}9} = {\color{red}1}{\color{blue}7}.$ We write ${\color{blue}7}$ below the ones and carry ${\color{red}1}$ to the tens :
\[
\begin{array}{cccccccc}
& & \!\!\!\! {\color{red}1} \!\!\!\! & \\
& & \!\!\!\! 8 \!\!\!\!& \!\!\!\! {\color{blue}8} \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! {\color{blue}9} \!\!\!\! \\
\hline
& & \!\!\!\! \!\!\!\!& \!\!\!\! {\color{blue}7} \!\!\!\!
\end{array}
\]
Step 2. Adding the tens, ${\color{blue}1} + {\color{blue}8} + {\color{blue}7} = {\color{red}1}{\color{blue}6}.$ We write ${\color{blue}6}$ below the tens and carry ${\color{red}1}$ to the hundreds :
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{red}1} \!\!\!\! & \!\!\!\! {\color{blue}1} \!\!\!\! & \\
& & \!\!\!\! {\color{blue}8} \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & & \!\!\!\! {\color{blue}7} \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\
\hline
& & \!\!\!\! {\color{blue}6} \!\!\!\!& \!\!\!\! 7 \!\!\!\!
\end{array}
\]
Step 3. Adding the hundreds, ${\color{blue}1}+{\color{blue}0}+{\color{blue}0}={\color{blue}1}{:}$
\[
\begin{array}{cccccccc}
& \!\!\!\! {\color{blue}1} \!\!\!\! & \!\!\!\! {\color{black}1} \!\!\!\! & \\
& \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\
\!\!\!\!+\!\!\!\! & \!\!\!\! {\color{blue}0} \!\!\!\! & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\
\hline
& \!\!\!\! {\color{blue}1} \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 7 \!\!\!\!
\end{array}
\]
Therefore, $88 + 79 = 167.$
So, Dominic and Margaret drove $\bbox[3pt,Gainsboro]{\color{blue}167}$ miles in total.
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL