To solve an equation like 2x+4 =10 , we need to apply both the addition and multiplication principles.

First, we apply the addition principle, subtracting 4 from both sides:

\eqalign{ 2x+4{\color{red}\:-\:4} &=10{\color{red}\:-\:4}\\ 2x+0&=6\\ 2x &=6 }

Second, we apply the multiplication principle, dividing both sides by 2\mathbin{:}

\require{cancel} \eqalign{ \dfrac{2x}{\color{red}2} &=\dfrac{6}{\color{red}2}\\ \dfrac{\cancel{2}x}{\cancel{\color{red}2}} &= 3 \\ x &=3 }

So x=3 is our solution. Let's plug this back into the original equation, to be sure that it's correct.

\begin{align} 2x+4 &=10\\ 2 \cdot 3 +4 &=10\\ 6+4 &=10\\ 10 &=10\,{\color{green}{\checkmark}} \end{align}

Note: When solving these types of equations, we always apply the addition principle first, and the multiplication principle second.

FLAG

Solve the equation 3p-7 =20.

EXPLANATION

First, we apply the addition principle, adding 7 to both sides:

\eqalign{ 3p-7 &=20\\ 3p-7+7 &=20+7 \\ 3p + 0 &= 27 \\ 3p &=27 }

Second, we apply the multiplication principle, dividing both sides by 3\mathbin{:}

\eqalign{ 3p &=27 \\[5pt] \dfrac{3p}{3} &=\dfrac{27}{3} \\[5pt] \dfrac{\cancel{3}p}{\cancel{3}} &= 9 \\[5pt] p &=9 }

FLAG

What is the solution to the equation $5x+4=19?$

a
$x=0$
b
$x=-3$
c
$x=\dfrac {23} 5$
d
$x=2$
e
$x=3$

If $-7 - z = 10$, then $z =$

a
b
c
d
e

If $7-3k=16$, then $k=$

a
$6$
b
$3$
c
$-3$
d
$-6$
e
$-9$

Solve for x where 2=5x-8.

EXPLANATION

To save time, we will keep the variable on the right-hand side as we solve. First, we apply the addition principle, adding 8 to both sides:

\begin{align*} 2&=5x-8 \\ 2+8&=5x-8+8 \\ 10 &= 5x + 0 \\ 10 &= 5x \end{align*}

Second, we apply the multiplication principle, dividing both sides by 5\mathbin{:}

\begin{align*} \require{cancel} 10 &= 5x \\[5pt] \dfrac{10}{5} &= \dfrac{5x}{5} \\[5pt] 2 &= \dfrac{\cancel{5} x}{\cancel{5} } \\[5pt] 2 &= x \end{align*}

Since 2=x, we conclude that the solution is x=2.

FLAG

If $20 = 6k + 8,$ then $k=$

a
b
c
d
e

Solve for $s$ if $30 = -6+4s.$

a
$s = \dfrac{1}{3}$
b
$s = 9$
c
$s = 6$
d
$s = 12$
e
$s = \dfrac{1}{9}$

If $15 = 8 - x$, then $x =$

a
b
c
d
e

If $18 =3-5x,$ then $x=$

a
b
c
d
e

Solving equations with both the addition and multiplication principles can be a lot of work. There are often many steps to write down. However, we don't have to write down all of the steps.

For example, when using the multiplication principle to solve

\dfrac{y}{2} = 5,

the set of full steps are as follows:

\begin{align*} \require{cancel} \dfrac{y}{2} &= 5 \\[5pt] 2 \cdot \dfrac{y}{2} &= 2 \cdot 5 \\[5pt] \dfrac{2y}{2} &= 10 \\[5pt] \dfrac{\cancel{2}y}{\cancel{2}} &= 10 \\[5pt] y &= 10 \end{align*}

However, if we cancel out the 2 's to indicate that they disappear, then we can skip writing down several of the steps.

\begin{align*} \require{cancel} \dfrac{y}{2} &= 5 \\[5pt] \cancel{2} \cdot \dfrac{y}{\cancel{2}} &= 2 \cdot 5 \\[5pt] y &= 10 \end{align*}

FLAG

Solve the equation 7-\dfrac{p}{3} =9.

EXPLANATION

After converting the equation to a more familiar form, we apply the addition principle, subtracting 7 from both sides:

\require{cancel} \eqalign{ 7-\dfrac{p}{3} &=9 \\ -\dfrac{p}{3}+7 &=9\\ -\dfrac{p}{3}+7-7 &= 9-7 \\ -\dfrac{p}{3}+0 &= 2 \\ -\dfrac{p}{3} &=2 }

Then, we apply the multiplication principle. We multiply by -1 to get rid of the negative sign, and again by 3 to get rid of the fraction:

\eqalign{ -\dfrac{p}{3} &=2 \\ (-1) \cdot \left( -\dfrac{p}{3} \right) &=(-1) \cdot 2 \\ \dfrac{p}{3} &=-2 \\ \cancel{3} \cdot \dfrac{p}{\cancel{3}} &=3 \cdot (-2) \\ p &=-6 }

FLAG

If $\dfrac 1 6 x + 2 = 4$, then $x =$

a
$12$
b
$48$
c
$36$
d
$6$
e
$\dfrac 1 6$

Solve for $b$ where $12 - \dfrac b 4 = 14.$

a
$b=8$
b
$b=16$
c
$b=-\dfrac 1 2$
d
$b=-8$
e
$b=\dfrac 1 2$

Solve the equation -\dfrac{z}{3}-\dfrac 1 2 =\dfrac 7 2.

EXPLANATION

First, we apply the addition principle, adding \dfrac{1}{2} to both sides:

\require{cancel} \eqalign{ -\dfrac{z}{3}-\dfrac 1 2 &=\dfrac 7 2\\[5pt] -\dfrac{z}{3} - \dfrac 1 2+\dfrac 1 2 &= \dfrac 7 2+\dfrac 1 2 \\[5pt] -\dfrac{z}{3} + 0 &= \dfrac 7 2+\dfrac 1 2 \\[5pt] -\dfrac{z}{3} &=\dfrac 8 2 \\[5pt] -\dfrac{z}{3} &=4 }

Then, we apply the multiplication principle. We multiply by -1 to get rid of the negative sign, and again by 3 to get rid of the fraction.

\require{cancel} \eqalign{ -\dfrac{z}{3} &=4 \\ (-1) \cdot \left( -\dfrac{z}{3} \right) &= (-1) \cdot 4 \\[5pt] \dfrac{z}{3} &=-4 \\[5pt] \cancel{3} \cdot \dfrac{z}{\cancel{3}} &= 3 \cdot (-4) \\[5pt] z &=-12 }

FLAG

If $\dfrac x 5 + 2 = \dfrac 2 3$, then $x =$

a
$- \dfrac 1 3$
b
$ \dfrac {10} 3$
c
$- \dfrac {10} 3$
d
$- \dfrac {20} 5$
e
$- \dfrac {20} 3$

If $\dfrac{x}{2} - \dfrac{1}{5} = 1$, then $x =$

a
$\dfrac{3}{5}$
b
$\dfrac{8}{5}$
c
$\dfrac{4}{5}$
d
$\dfrac{16}{5}$
e
$\dfrac{12}{5}$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL