Whenever we have a fraction in an equation, we apply the multiplication principle to get rid of it. For example, consider the equation below: \dfrac{2x+12}{3} =6

Since the opposite of dividing by 3 is multiplying by 3 , we apply the multiplication principle and multiply both sides of the equation by 3 :

\require{cancel} \eqalign{ \dfrac{2x+12}{3} &=6\\ 3 \cdot \left(\dfrac{2x+12}{3}\right) &= 3 \cdot 6\\ \cancel{3} \cdot \left(\dfrac{2x+12}{\cancel{3}}\right) &= 18 \\ 2x+12 &= 18 }

The process of removing the fraction is called clearing the rational expression. We now have an equation that we can solve using the usual methods: \eqalign{ 2x+12 &= 18\\ 2x+12-12 &=18-12 \\ 2x &=6 \\ \dfrac{2x}{2} &=\dfrac{6}{2} \\ x &=3 }

FLAG

Solve the equation 13 = \dfrac{6y+8}{2}.

EXPLANATION

First, we clear the rational expression by multiplying both sides by 2\mathbin{:} \eqalign{ 13 &= \dfrac{6y+8}{2} \\ 2 \cdot 13 &= 2 \cdot \left(\dfrac{6y+8}{2}\right) \\ 2 \cdot 13 &= \cancel{2} \cdot \left(\dfrac{6y+8}{\cancel{2}}\right) \\ 26 &= 6y+8 }

Next, we solve the remaining equation using the addition and multiplication principles:

\eqalign{ 26 &= 6y+8 \\ 26-8 &= 6y+8-8 \\ 18 &= 6y \\ \dfrac{18}{6} &= \dfrac{6y}{6} \\ 3 &= y }

Thus, y=3.

FLAG

If $\dfrac{2x + 6}{5} = 4$, then $x =$

a
$7$
b
$3$
c
$13$
d
$\dfrac 1 2$
e
$28$

Solve for $y$ where $-4=\dfrac{2y+10}{5}.$

a
$y=-20$
b
$y=-5$
c
$y=-25$
d
$y=-10$
e
$y=-15$

Solve the equation \dfrac{a+2}{3} =a.

EXPLANATION

First, we clear the rational expression by multiplying both sides by 3\mathbin{:} \require{cancel} \eqalign{ \dfrac{a+2}{3} &=a \\ 3 \cdot \left( \dfrac{a+2}{3} \right) &= 3 \cdot a \\ \cancel{3} \cdot \left( \dfrac{a+2}{ \cancel{3} } \right) &= 3a \\ a+2 &= 3a }

Next, we solve the remaining equation using the addition and multiplication principles:

\require{cancel} \eqalign{ a+2 &= 3a \\ a + 2 - a &= 3a - a \\ 2 &= 2a \\ \dfrac{2}{2} &= \dfrac{2a}{2} \\ 1 &= a }

Thus, a=1.

FLAG

Solve the equation $\dfrac{5x-1}{3} = 3x.$

a
$x = \dfrac{3}{4}$
b
$x = \dfrac{5}{3}$
c
$x = -\dfrac{1}{4}$
d
$x = -4$
e
$x = -\dfrac{2}{5}$

Solve the equation $\dfrac{8y+5}{3} =6y.$

a
$y=\dfrac{1}{6}$
b
$y=2$
c
$y=\dfrac{1}{5}$
d
$y=\dfrac{1}{2}$
e
$y=5$

Solve the equation \dfrac{2n+6}{3} = 4n+1.

EXPLANATION

First, we clear the rational expression by multiplying both sides by 3. We must make sure that all of the terms on the right-hand side are multiplied by 3.

\begin{align} \require{cancel} \dfrac{2n+6}{3} &= 4n+1\\ 3\cdot \left(\dfrac{2n+6}{3}\right) &= 3\cdot\left(4n+1\right)\\ \cancel{3}\cdot \left(\dfrac{2n+6}{\cancel{3}}\right) &= 3 \cdot 4n + 3 \cdot 1\\ 2n+6 &= 12n+3 \end{align}

Next, we solve the remaining equation using the addition and multiplication principles:

\begin{align} \require{cancel} 2n+6 &= 12n+3\\ 2n+6 -2n&= 12n+3-2n\\ 6 &= 10n+3\\ 6-3 &= 10n+3-3\\ 3 &=10n \\ \dfrac{3}{10} &= \dfrac{10n}{10} \\ \dfrac{3}{10} &= n \end{align}

Thus, n = \dfrac{3}{10}.

FLAG

Solve for $g$ where $\dfrac{21-g}{2}=21+3g.$

a
$g=9$
b
$g=-3$
c
$g=3$
d
$g=5$
e
$g=-9$

Solve for $a$ where $\dfrac{10+a}{4}=4 - 2a.$

a
$a=\dfrac{4}{3}$
b
$a=2$
c
$a=\dfrac{2}{3}$
d
$a=\dfrac{3}{5}$
e
$a=\dfrac{3}{2}$

Solve \dfrac{5p+10}{6} =2(p-5).

EXPLANATION

First, we clear the rational expression by multiplying both sides by 6\mathbin{:}

\eqalign{ \dfrac{5p+10}{6} &=2(p-5)\\ 6 \cdot \left(\dfrac{5p+10}{6}\right) &=6\cdot 2 (p-5) \\ \cancel{6} \cdot \left(\dfrac{5p+10}{\cancel{6}}\right) &=12(p-5) \\ 5p+10 &=12p-60 }

Then, we solve the remaining equation using the addition and multiplication principles:

\eqalign{ 5p+10 &=12p-60 \\ 5p+10-5p &=12p-60-5p \\ 10 &=7p-60 \\ 10+60 &=7p-60+60 \\ 70 &=7p \\ \dfrac{70}{7} &=\dfrac{7p}{7} \\ 10 &= p }

Thus, p=10.

FLAG

Solve for $z$ where $\dfrac{1+z}{5} = 2(z-2).$

a
$z = \dfrac{7}{3}$
b
$z = \dfrac{3}{5}$
c
$z = \dfrac{1}{3}$
d
$z = \dfrac{3}{7}$
e
$z = \dfrac{5}{3}$

Solve for $y$ where $-2(y+10)=\dfrac{-9+y}{4}.$

a
$y=9$
b
$y=-\dfrac{71}{9}$
c
$y=-8$
d
$y=\dfrac{71}{9}$
e
$y=-9$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL