We can simplify the product of two square roots, such as \sqrt{3}\cdot \sqrt{3}. First, we re-write the expression as a square: \sqrt{3} \cdot \sqrt{3} = \left(\sqrt{3}\right)^2. Now, recall that the square and the square root cancel each other out. So, we have \left(\sqrt{3}\right)^2 = 3.

We can do something similar for a product of three cube roots, like \sqrt[3]{3}\cdot \sqrt[3]{3}\cdot \sqrt[3]{3}. First, we rewrite the expression as a cube: \sqrt[3]{3}\cdot \sqrt[3]{3}\cdot \sqrt[3]{3} = \left(\sqrt[3]{3}\right)^3 Now, recall that the cube and the cube root cancel each other out. So, we have \left(\sqrt[3]{3}\right)^3 = 3.

FLAG

Find the value of \sqrt{5} \cdot \sqrt{5} .

EXPLANATION

First, we rewrite the expression as a square: \sqrt{5} \cdot \sqrt{5} = \left(\sqrt{5}\right)^2 Now, recall that the square and the square root cancel each other out. So, we have \left(\sqrt{5}\right)^2 = 5.

FLAG

Find the value of $\sqrt{6} \cdot \sqrt{6}.$

a
$\sqrt{6}$
b
$-36$
c
$6$
d
$12$
e
$36$

Find the value of $\sqrt{7} \cdot \sqrt{7}.$

a
$-7$
b
$7$
c
$2\sqrt{7}$
d
$\sqrt{14}$
e
$\sqrt{7}$

Find \sqrt[3]{12} \cdot \sqrt{3} \cdot \sqrt[3]{12} \cdot \sqrt{3} \cdot \sqrt[3]{12}.

EXPLANATION

Grouping up the square roots and the cube roots, we find \begin{align*} {\color{blue}\sqrt[3]{12}} \cdot {\color{red}\sqrt{3}} \cdot {\color{blue}\sqrt[3]{12}} \cdot {\color{red}\sqrt{3}} \cdot {\color{blue}\sqrt[3]{12}} &= \\ \left({\color{blue}\sqrt[3]{12}} \cdot {\color{blue}\sqrt[3]{12}} \cdot {\color{blue}\sqrt[3]{12}}\right) \left({\color{red}\sqrt{3}} \cdot {\color{red}\sqrt{3}}\right) &= \\ \left({\color{blue}\sqrt[3]{12}}\right)^3 \left({\color{red}\sqrt{3}}\right)^2 &= \\ {\color{blue}12} \cdot {\color{red}3} &= \\ 36&. \end{align*}

FLAG

Find the value of $\sqrt[3]{-11} \cdot \sqrt[3]{-11} \cdot \sqrt[3]{-11}.$

a
$121$
b
$-121$
c
$11$
d
$33$
e
$-11$

Find $\sqrt[3]{-5} \cdot \sqrt{7} \cdot \sqrt[3]{-5} \cdot \sqrt{7} \cdot \sqrt[3]{-5}.$

a
$49$
b
$35$
c
$25$
d
$-35$
e
$\sqrt{25}$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL