To multiply fractions, we multiply the numerators, multiply the denominators, and simplify (if necessary).
For example, to multiply we multiply the numerators and we multiply the denominators:
Notice that we get the same answer when we use a fraction model.
Find the value of
To multiply two fractions, we multiply the numerators, and we multiply the denominators:
$\dfrac 1 {4} \times \dfrac 1 {5} =$
a
|
$\dfrac 1 {9}$ |
b
|
$\dfrac 1 {45}$ |
c
|
$\dfrac 4 {5}$ |
d
|
$\dfrac 2 {5}$ |
e
|
$\dfrac 1 {20}$ |
$\dfrac{4}{7} \times \dfrac{1}{9} = $
a
|
$\dfrac{5}{16}$ |
b
|
$\dfrac{2}{9}$ |
c
|
$\dfrac{4}{21}$ |
d
|
$\dfrac{2}{31}$ |
e
|
$\dfrac{4}{63}$ |
Multiply
To multiply two fractions, we multiply the numerators, and we multiply the denominators:
$\dfrac 4 {5} \times \dfrac 3 {7}=$
a
|
$ \dfrac{5}{12}$ |
b
|
$ \dfrac{12}{35}$ |
c
|
$ \dfrac{7}{35}$ |
d
|
$ \dfrac{15}{28}$ |
e
|
$ \dfrac{7}{12}$ |
$\dfrac{7}{2} \times \dfrac{9}{4} =$
a
|
$\dfrac{63}{8}$ |
b
|
$\dfrac{17}{6}$ |
c
|
$\dfrac{54}{7}$ |
d
|
$\dfrac{24}{9}$ |
e
|
$\dfrac{8}{3}$ |
Multiply
To multiply two fractions, we multiply the numerators, and we multiply the denominators:
We reduce this fraction to its simplest form by dividing the numerator and denominator by
$\dfrac{1}{2} \times \dfrac{4}{5} =$
a
|
$\dfrac{6}{7}$ |
b
|
$\dfrac{5}{6}$ |
c
|
$\dfrac{2}{5}$ |
d
|
$\dfrac{3}{8}$ |
e
|
$\dfrac{1}{5}$ |
$\dfrac{1}{3} \times \dfrac{6}{7} = $
a
|
$\dfrac{1}{3}$ |
b
|
$\dfrac{3}{7}$ |
c
|
$\dfrac{2}{7}$ |
d
|
$\dfrac{2}{3}$ |
e
|
$\dfrac{7}{3}$ |