We can use place value strategies to multiply any whole number by 10.

For example, let's use our understanding of place value to solve the following multiplication problem:

4 \times 10

Remember that 4 \times 10 means " 4 groups of 10. " Therefore,

\begin{align*} {\color{blue}{4}} \times 10 & = \\[8pt] \underbrace{10 + 10 + 10 + 10}_{{\color{blue}{4}} \, \textrm{times}} & = \\[8pt] {\color{blue}{4}} \, \textrm{tens} + 0 \, \textrm{ones}&=\\[8pt] {\color{blue}{4}}0 &. \end{align*}

The same computation can be explained visually as follows:

So, we conclude that

4\times 10 = 40.

We can use the same strategy to multiply two-digit numbers by 10, too. Let's see an example.

FLAG

Find the value of 35 \times 10.

EXPLANATION

Remember that 35 \times 10 means 35 groups of 10. Therefore,

\begin{align*} {\color{red}{3}}{\color{blue}{5}} \times 10 & = \\[5pt] \underbrace{10 + 10 + \cdots + 10}_{{\color{red}{3}}{\color{blue}{5}} \, \textrm{times}} & = \\[5pt] {\color{red}{3}}{\color{blue}{5}} \, \textrm{tens} + 0 \, \textrm{ones} & = \\[5pt] {\color{red}{3}}\,\textrm{hundreds} + {\color{blue}{5}}\,\textrm{tens} + 0\,\textrm{ones} & = \\[5pt] {\color{red}{3}}{\color{blue}{5}}0&. \end{align*}

FLAG

Calculate the following product. Express your answer as a whole number.

a
b
c
d
e

$3\times 10 = $

a
$300$
b
$100$
c
$10$
d
$3$
e
$30$

$12\times 10 = $

a
$12$
b
$1,200$
c
$120$
d
$1,000$
e
$100$

What is 17 \times 100?

EXPLANATION

Remember that 17 \times 100 means 17 groups of 100. Therefore, \begin{align*} {\color{red}{1}}{\color{blue}{7}} \times 100 & = \\[5pt] \underbrace{100 + 100 + \cdots + 100}_{{\color{red}{1}}{\color{blue}{7}}\,\textrm{times}} & =\\[5pt] {\color{red}{1}}{\color{blue}{7}}\,\textrm{hundreds} + 0\,\textrm{tens} + 0\,\textrm{ones} & = \\[5pt] {\color{red}{1}}\,\textrm{thousands} + {\color{blue}{7}}\,\textrm{hundreds} + 0\,\textrm{tens} + 0\,\textrm{ones} & = \\[5pt] {\color{red}{1}},{\color{blue}{7}}00&. \end{align*}

FLAG

$2\times 100 = $

a
$20$
b
$2,000$
c
$200$
d
$400$
e
$1,000$

Calculate the following product. Express your answer as a whole number.

a
b
c
d
e

$34\times 100 = $

a
$1,000$
b
$34,000$
c
$340$
d
$3,000$
e
$3,400$

Find 79 \times 1,000.

EXPLANATION

Remember that 79 \times 1,000 means 79 groups of 1,000. Therefore, \begin{align*} {\color{red}{7}}{\color{blue}{9}} \times 1,000 & =\\[5pt] \underbrace{1,000 + 1,000 + \cdots + 1,000}_{{\color{red}{7}}{\color{blue}{9}}\, \textrm{times}} & = \\[5pt] {\color{red}{7}}{\color{blue}{9}}\,\textrm{thousands} + 0\,\textrm{hundreds} + 0\,\textrm{tens} + 0\,\textrm{ones} & = \\[5pt] {\color{red}{7}}\,\textrm{ten-thousands} + {\color{blue}{9}}\,\textrm{thousands} + 0\,\textrm{hundreds} + 0\,\textrm{tens} + 0\,\textrm{ones} & = \\[5pt] {\color{red}{7}}{\color{blue}{9}},000&. \end{align*}

FLAG

$9 \times 1,000 = $

a
$910$
b
$9,100$
c
$900$
d
$9,000$
e
$90,000$

$18\times 1,000 = $

a
$10,000$
b
$180,000$
c
$180$
d
$18,000$
e
$1,800$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL