To multiply a decimal by a multi-digit whole number, such as 28 \times 6.2, we can use the usual method of removing and replacing the decimal point.

Step 1. First, ignore the decimal point and multiply as if both numbers were whole numbers:

\begin{align*} \require{cancel} %%%%%%%%%% %%% Step A %%% %%%%%%%%%% & \begin{array}{ccccc} & & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}4[/math]} \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \\ & & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 8 \!\!\!\! \\ \!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! 6 \!\!\!\! & \!\!\!\!\!\!\! . 2 \!\!\!\! \\ \hline & & \!\!\!\! \!\!\!\! & \!\!\!\! 5 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 0 \!\!\!\! \\ \hline & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 7 \!\!\!\! & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\ \end{array} \end{align*}

Step 2. Then, we insert the decimal point to have the same number of decimal places as the decimal factor.

Here, there is \color{blue}1 decimal place in 6.2, so the product will also have {\color{blue}{1}} decimal place. We take our value of 1736 and insert a decimal point to make a number with \color{blue}1 decimal place:

173\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{6}_{\large\text{[math]\color{blue}1[/math] digit}}

Therefore, 28 \times 6.2 = 173.6 \, .

FLAG

Find the value of 9.4 \times 23.

EXPLANATION

First, we ignore the decimal point and multiply as if both numbers were whole numbers:

\begin{align*} \require{cancel} %%%%%%%%%% %%% Step A %%% %%%%%%%%%% & \begin{array}{ccccc} & & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}\phantom{0}[/math]} \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \\ & & & \!\!\!\! 9 \!\!\!\! & \!\!\!\!\!\!\! . 4 \!\!\!\! \\ \!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\ \hline & & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 0 \!\!\!\! \\ \hline & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 2 \!\!\!\! \\ \end{array} \end{align*}

We now count the total number of decimal places in the two factors.

There is \color{blue}1 decimal place in 9.4, so the product will also have {\color{blue}{1}} decimal place.

So, we take our value of 2162 and insert a decimal point to make a number with 1 decimal place:

216\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{2}_{\large\text{[math]\color{blue}1[/math] digit}}

Therefore, 94 \times 2.3 = 216.2 \, .

FLAG

$1.2 \times 51 = $

a
$6.12$
b
$61.2$
c
$6$
d
$602$
e
$6.02$

$34 \times 7.5 =$

a
$25.50$
b
$23.8$
c
$255$
d
$238$
e
$2.55$

What is 154 multiplied by 3.9?

EXPLANATION

First, we ignore the decimal point and multiply as if both numbers were whole numbers:

\begin{align*} & \begin{array}{ccccc} & & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\[2pt] \fbox{[math]\color{blue}4[/math]} } \!\!\!\! & \!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\[2pt] \fbox{[math]\color{blue}3[/math]} } \!\!\!\! & \\ & & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 5 \!\!\!\! & \!\!\!\! 4 \!\!\!\! \\ \!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! 3 \!\!\!\! & \!\!\!\!\!\!\! . 9 \!\!\!\! \\ \hline & & \!\!\!\!1\!\!\!\! & \!\!\!\!3\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!6\!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \hline & \!\!\!\!\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!0\!\!\!\! & \!\!\!\!0\!\!\!\! & \!\!\!\!6\!\!\!\! \\ \end{array} \end{align*}

We now count the total number of decimal places in the two factors.

There is \color{blue}1 decimal place in 3.9, so the product will also have {\color{blue}{1}} decimal place.

So, we take our value of 6006 and insert a decimal point to make a number with 1 decimal place:

600\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{6}_{\large\text{[math]\color{blue}1[/math] digit}}

Therefore, 154 \times 3.9 = 600.6 \, .

FLAG

$178 \times 5.4 =$

a
$962.1$
b
$921.6$
c
$9.612$
d
$96.12$
e
$961.2$

$925 \times 4.5 =$

a
$4,162.5$
b
$4,314.2$
c
$4,514.7$
d
$4,261.6$
e
$4,426.7$

What is 7.09 multiplied by 237?

EXPLANATION

First, we ignore the decimal point and multiply as if both numbers were whole numbers:

\begin{align*} & \begin{array}{ccccc} & & & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}\phantom{0}[/math]} \\ \fbox{[math]\color{blue}\phantom{0}[/math]} \\[2pt] \fbox{[math]\color{blue}\phantom{0}[/math]} } \!\!\!\!\! & \!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}1[/math]} \\ \fbox{[math]\color{blue}2[/math]} \\[2pt] \fbox{[math]\color{blue}6[/math]} } \!\!\!\! & \\ & & & & \!\!\!\! 7 \!\!\!\! & \!\!\!\!\!\!\! . 0 \!\!\!\! & \!\!\!\! 9 \!\!\!\! \\ \!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! 2 \!\!\!\! & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 7 \!\!\!\! \\ \hline & & & \!\!\!\!4\!\!\!\! & \!\!\!\!9\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!3\!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\!2\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!7\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!4\!\!\!\! & \!\!\!\!1\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!0\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \hline & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\! & \!\!\!\! 8 \!\!\!\! & \!\!\!\! 0 \!\!\!\! & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 3 \!\!\!\! \\ \end{array} \end{align*}

We now count the total number of decimal places in the two factors.

There are \color{blue}2 decimal places in 7.09, so the product will also have {\color{blue}{2}} decimal places.

So, we take our value of 168033 and insert a decimal point to make a number with \color{blue}2 decimal places:

1680\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{33}_{\large\text{[math]\color{blue}2[/math] digits}}

Therefore, 7.09 \times 237 = 1680.33 \, .

FLAG

$239 \times 3.74 =$

a
$898.36$
b
$839.86$
c
$893.86$
d
$8938.6$
e
$89.386$

$7.03 \times 216 =$

a
$1,518.48$
b
$18.1548$
c
$1,418.58$
d
$15,184.8$
e
$151.848$

A roll of adhesive tape is 7.50 meters long. How many meters of adhesive tape are in 136 rolls?

EXPLANATION

First, notice that 7.50=7.5.

To find out how many meters of adhesive tape are in 136 rolls, we need to multiply 136 by 7.5.

First, we ignore the decimal point and multiply as if both numbers were whole numbers:

\begin{align*} & \begin{array}{ccccc} & & & \!\!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}2[/math]} \\[2pt] \fbox{[math]\color{blue}1[/math]} } \!\!\!\! & \!\!\!\!\! \color{lightgray} \substack{ \fbox{[math]\color{blue}4[/math]} \\[2pt] \fbox{[math]\color{blue}3[/math]} } \!\!\!\! & \\ & & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 3 \!\!\!\! & \!\!\!\! 6 \!\!\!\! \\ \!\!\!\!\times\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\!\phantom{0}\!\!\!\! & \!\!\!\! 7 \!\!\!\! & \!\!\!\!\!\!\! . 5 \!\!\!\! \\ \hline & & \!\!\!\!\!\!\!\! & \!\!\!\!6\!\!\!\! & \!\!\!\!8\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \!\!\!\!+\!\!\!\! & \!\!\!\!\!\!\!\! & \!\!\!\!9\!\!\!\! & \!\!\!\!5\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \hline & \!\!\!\!1\!\!\!\! & \!\!\!\!0\!\!\!\! & \!\!\!\!2\!\!\!\! & \!\!\!\!0\!\!\!\! & \!\!\!\!0\!\!\!\! \\ \end{array} \end{align*}

We now count the total number of decimal places in the two factors.

There is \color{blue}1 decimal place in 7.5, so the product will also have {\color{blue}{1}} decimal place.

So, we take our value of 10200 and insert a decimal point to make a number with \color{blue}1 decimal place:

1020\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{0}_{\large\text{[math]\color{blue}1[/math] digit}}

So, 136 \times 7.5 = 1,020.0 \, .

Therefore, 136 rolls of adhesive tape contain 1,020 meters of tape.

FLAG

Mary runs $3.6 \, \textrm{km}$ every morning. How far will she run over $18$ mornings?

a
$64.8$ kilometers
b
$86.4$ kilometers
c
$84.6$ kilometers
d
$46.8$ kilometers
e
$68.4$ kilometers

Maya wants to travel from Davenport to Chicago. The distance between the two cities is $153$ miles. If a mile is equivalent to $1.6\,\textrm{km},$ how many kilometers are there between Davenport and Chicago?

a
$24.48$ kilometers
b
$284.8$ kilometers
c
$234.8$ kilometers
d
$23.48$ kilometers
e
$244.8$ kilometers
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL