To simplify an expression like -(3+b) , we need to distribute the negative sign across each of the terms inside the parentheses. This can be accomplished by treating the negative sign like multiplication by (-1). For example: \begin{align*} -(3+b) &=\\ (-1)(3+b) &= \\ (-1) \cdot 3 + (-1) \cdot b &=\\ -3 + (-b) &=\\ -3 - b \end{align*}

In these cases, the negative sign in front of the parentheses represents the -1 . However, to save space, only the negative sign is shown.

FLAG

Simplify the expression - \left( 3n+\dfrac{1}{2}k \right).

EXPLANATION

First, we rewrite the negative sign as multiplication by (-1)\mathbin:

\eqalign{ - \left( 3n+\dfrac{1}{2}k \right)&=\\ (-1) \left( 3n+\dfrac{1}{2}k \right) }

Then, we distribute the (-1) to each term in the parentheses, and simplify:

\eqalign{ (-1) \left( 3n+\dfrac{1}{2}k \right)&=\\ (-1) (3n)+(-1) \left( \dfrac{1}{2}k \right)&=\\ -3n+ \left( -\dfrac{1}{2}k \right) &=\\ -3n-\dfrac{1}{2}k }

FLAG

Expand $-\left(y + 7z\right).$

a
$-y - 7z$
b
$y + 7z$
c
$7 y + z$
d
$-y + 7z$
e
$y - 7z$

Expand $-\left( \dfrac{1}{2} + 3c \right).$

a
$-\dfrac{1}{2} + 3c$
b
$\dfrac{1}{2} + 3c$
c
$\dfrac{1}{2} - 3c$
d
$-\dfrac{1}{2} - 3c$
e
$3 + \dfrac{1}{2} c$

Simplify the expression -(2x-1.3).

EXPLANATION

First, we rewrite the negative sign as multiplication by (-1)\mathbin:

\eqalign{ -(2x-1.3)&=\\ (-1)(2x-1.3) }

Then, we distribute the (-1) to each term in the parentheses, and simplify:

\eqalign{ (-1)(2x-1.3)&=\\ (-1) (2x)-(-1) (1.3)&=\\ -2x-(-1.3)&=\\ -2x+1.3 }

FLAG

Simplify $-(0.3x-0.2y).$

a
$-0.3x-0.2y$
b
$0.3x+0.2y$
c
$-0.3x+0.2y$
d
$-0.2x-0.4y$
e
$0.3x-0.2y$

Simplify $-(a-2 b).$

a
$-a+2b$
b
$2a+b$
c
$-a-2b$
d
$a+2b$
e
$a-b$

By distributing the negative sign across each of the terms inside the parentheses, we're merely changing the sign of each term. In other words:

  • If a term was positive inside the parentheses, it becomes negative.

  • If a term was negative inside the parentheses, it becomes positive.

FLAG

Simplify -\left( -p + 2q - \dfrac{1}{3} \right).

EXPLANATION

To distribute the negative sign to the terms inside the parentheses, all we have to do is change the sign of each term.

\begin{align*} -\left(-p + 2q - \dfrac{1}{3} \right) &= \\ p -2q + \dfrac{1}{3} & \end{align*}

FLAG

Simplify the expression $-(10j-11k+15m).$

a
$10j+11k+15m$
b
$-10j-11k-15m$
c
$-10j+11k-15m$
d
$10j+11k-15m$
e
$-10j+11k+15m$

Simplify $-(-a+b-c).$

a
$a-b+c$
b
$-a+b-c$
c
$a-b-c$
d
$-a-b-c$
e
$a+b+c$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL