Suppose we want to compute the sum of two numbers with different numbers of decimal places, such as

19+5.6.

Here, there are no decimal places in 19, but there is \color{blue}1 decimal place in 5.6.

In order to add the two numbers, we need the two numbers to have the same number of decimal places. We can achieve this by attaching an extra zero behind the decimal place in the first number, so that it has \color{blue}1 decimal place:

19\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\underbrace{0}_{\large\text{[math]\color{blue}1[/math] zero}}\!\!

Remember that whenever we attach an extra zero behind the decimal place, the number remains unchanged. So the number 19.0 is equivalent to the original number 19.

Now the addition problem reads

19.0 + 5.6,

and we can add the decimal numbers using the usual method. First, we line up the decimal points:

\begin{array}{cccccccc} & & \!\!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& \end{array}

Then, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & \!\!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& & \\ & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 6 \!\!\!\! \\ \hline & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 6 \!\!\!\! \end{array}

Therefore, 19 + 5.6 = 24.6.

FLAG

What is the value of 6 + 16.4?

EXPLANATION

There are no decimal places in 6 and there is \color{blue}1 decimal place in 16.4.

To add the numbers, they both need the same number of decimals. Hence, we rewrite the first number so that it has \color{blue}1 decimal zero: 6\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\!\!\underbrace{0}_{\large\text{[math]\color{blue}1[/math] zero}}\!\!\!

Next, we line up the decimal points:

\begin{array}{cccccccc} & && \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& \end{array}

Finally, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & \!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& & \\ & && \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\! & \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 4 \!\!\!\! \end{array}

Therefore, 6 + 16.4 = 22.4.

FLAG

$12 + 5.2=$

a
b
c
d
e

$58.4 + 3=$

a
b
c
d
e

What is 15.4 + 20.79?

EXPLANATION

There is \color{blue}1 decimal place in 15.4 and there are \color{blue}2 decimal places in 20.79.

In order to add the two numbers, we need them to have the same number of decimal places. So, we rewrite the first number so that it has \color{blue}2 decimal places:

15.4=15.4{\color{red}0}

Next, we line up the decimal points:

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 7 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& & \end{array}

Finally, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & & \!\!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& & \\ & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 7 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \\ \hline & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\! \end{array}

Therefore, 15.4 + 20.79 = 36.19.

FLAG

$1.45 + 9.2=$

a
b
c
d
e

On a particular weekend, Sam rode his bicycle for $5.3\,\textrm{mi}.$ After that, he rode for a further $2.45\,\textrm{mi}.$ Find the total distance that Sam traveled.

a
$7.75\,\textrm{mi}$
b
$7.7\,\textrm{mi}$
c
$6.98\,\textrm{mi}$
d
$75.7\,\textrm{mi}$
e
$7.48\,\textrm{mi}$

What is the value of 32.54 + 16.854?

EXPLANATION

There are \color{blue}2 decimal places in 32.54 and there are \color{blue}3 decimal places in 16.854.

To add the two numbers, we need them to have the same number of decimal places. So, we rewrite the second number so that it has \color{blue}3 decimal places:

32.54=32.54{\color{red}0}

Next, we line up the decimal points:

\begin{array}{cccccccc} & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& & & \end{array}

Finally, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & & \!\!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& & & \\ & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \end{array}

Therefore, 32.54 + 16.854 = 49.394.

FLAG

$25.14+ 6.723=$

a
b
c
d
e

$4.362 + 5.24=$

a
b
c
d
e

Sometimes, we will need to place more than one zero to the right of a decimal point.

For instance, to find the value of 78.9 + 45.962, notice that there is \color{blue}1 decimal place in 78.9 and there are \color{blue}3 decimal places in 45.962.

To add the two numbers, we need them to have the same number of decimal places. So, we rewrite the first number so that it has \color{blue}3 decimal places:

78.9=78.9{\color{red}00}

Next, we line up the decimal points:

\begin{array}{cccccccc} & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& & & \end{array}

Finally, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & \!\!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& \!\!\!\! \color{blue}\substack{ \\ 1 } \!\!\!\!& & & \\ & & \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 4 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \hline & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \end{array}

Therefore, 78.9 + 45.962 = 124.862.

FLAG

What is the value of 56 + 10.3691?

EXPLANATION

There are no decimal places in 56, and there are \color{blue}4 decimal places in 10.3691.

To add the two numbers, we need them to have the same number of decimal places. So, we rewrite the first number so that it has \color{blue}4 decimal places: 56\,\overset{\color{red}\downarrow}{\color{red}\bbox[2px, lightgray]{.}}\!\underbrace{0000}_{\large\text{[math]\color{blue}4[/math] zeros}}\!

Next, we line up the decimal points:

\begin{array}{cccccccc} & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \hline & & & & \!\!\!\! . \!\!\!\!& & & & \end{array}

Finally, we proceed by adding the two numbers just as we would with whole numbers:

\begin{array}{cccccccc} & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \hline & & \!\!\!\! 6 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! . \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \end{array}

Therefore, 56 + 10.3691 = 66.3691.

FLAG

$8 + 23.4532=$

a
b
c
d
e

$24.6 + 7.437 =$

a
b
c
d
e

Diana bought $2$ pounds of strawberry jelly beans and $1.5$ pounds of orange jelly beans for her birthday party. How many pounds of jelly beans did Diana buy in total?

a
$3$ pounds
b
$3.5$ pounds
c
$4$ pounds
d
$2.5$ pounds
e
$4.5$ pounds
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL