Two angles are congruent if their measures are equal.

For example, if

m\angle X =50^\circ \quad \text{and} \ \quad m\angle Y=50^\circ,

then \angle X and \angle Y are congruent. We can express this as

\angle X \cong \angle Y.

However, if

m\angle X =50^\circ \quad \text{and} \ \quad m\angle Z = 110^\circ,

then \angle X and \angle Z are not congruent, and we write

\angle X \ncong \angle Z.

We represent congruent angles by marking the arcs with the same symbol. For example, three pairs of congruent angles are show below:

FLAG

From the information given below, find all of the angles that are congruent. \begin{align} m \angle A &= 10^\circ, \\[3pt] m \angle B &= 40^\circ, \\[3pt] m \angle C &= 80^\circ, \\[3pt] m \angle D &= 90^\circ-m \angle C, \\[3pt] m \angle E &= m \angle B. \end{align}

EXPLANATION

First, let's find the measures of \angle D and \angle E\mathbin{:}

\begin{align} m \angle D &= 90^\circ-m \angle C \\ &= 90^\circ-80^\circ \\ &= 10^\circ \\ \\ m \angle E &= m \angle B \\ & = 40^\circ \end{align}

So, we have:

\begin{align} m \angle A &= 10^\circ \\[3pt] m \angle B &= 40^\circ \\[3pt] m \angle C &= 80^\circ \\[3pt] m \angle D &= 10^\circ \\[3pt] m \angle E &= 40^\circ \end{align}

We have that m \angle A = m \angle D and m \angle B = m \angle E.

Therefore, \angle A \cong \angle D and \angle B \cong \angle E.

FLAG

Which of the angles shown above are congruent?

a
No congruent angles
b
$\angle 1 \cong \angle 2 \cong \angle 3$
c
$\angle 1 \cong \angle 2$
d
$\angle 2 \cong \angle 3$
e
$\angle 1 \cong \angle 3$

From the information given below, find all of the angles that are congruent. \begin{align} m \angle A &= 60^\circ, \\[3pt] m \angle B &= 30^\circ, \\[3pt] m \angle C &= 20^\circ, \\[3pt] m \angle D &= m \angle A, \\[3pt] m \angle E &= 90^\circ-m \angle B, \\[3pt] m \angle F &= 180^\circ-m \angle C. \\ \end{align}

a
$\angle A \cong \angle E$ and $\angle D \cong \angle F$
b
$\angle A \cong \angle D$ and $\angle B \cong \angle E$
c
$\angle A \cong \angle D$ and $\angle E \cong \angle F$
d
$\angle C \cong \angle E\cong \angle F$
e
$\angle A \cong \angle D\cong \angle E$

Which of the following statements are true regarding the angles shown below?

  1. \angle AOB \cong \angle COD
  2. \angle COD \cong \angle BOC
  3. m\angle BOC = m\angle DOE
EXPLANATION

From the diagram, we see that

  • \angle AOB & \angle COD are each marked with a single hash mark " | ," while

  • \angle BOC & \angle DOE are each marked with a double hash mark " ||. "

Therefore, \begin{align*} \angle AOB &\cong \angle COD \\ \angle BOC &\cong \angle DOE. \\ \end{align*}

Consequently, we have

\begin{align*} m\angle AOB &= m\angle COD \\ m\angle BOC &= m\angle DOE. \\ \end{align*}

So statements I and III are true, while statement II is false.

FLAG

Which of the following statements are true regarding the angles shown above?

  1. $\angle AOB \cong \angle BOC$
  2. $m\angle BOC = m\angle EOF$
  3. $\angle DOE \cong \angle COD$
a
I and III only
b
I and II only
c
II and III only
d
II only
e
I only

Which of the following statements are true regarding the angles shown above?

  1. $m\angle EOA = m\angle COD$
  2. $m\angle AOB = m\angle COD$
  3. $\angle EOA \cong \angle BOC$
a
I only
b
II only
c
III only
d
I, II and III
e
II and III only

In the figure above, m \angle CBD = 5x - 5^\circ and m \angle ABD =2x + 10^\circ . If \angle CBD \cong \angle ABD , find m \angle ABC.

EXPLANATION

Since \angle CBD \cong \angle ABD , we have \begin{align} m \angle CBD & = m \angle ABD\\[5pt] 5x - 5^\circ & = 2x + 10^\circ\\[5pt] 5x & = 2x + 15^\circ\\[5pt] 3x & = 15^\circ\\[5pt] x & = 5^\circ. \end{align}

Therefore, the measure of \angle CBD is m \angle CBD = 5x - 5^\circ = 5 \cdot 5^\circ - 5^\circ = 20^\circ and the measure of \angle ABD is also m \angle ABD =2x + 10^\circ = 2 \cdot 5^\circ + 10^\circ = 20^\circ .

So, by the angle addition postulate, \begin{align} m \angle ABC & = m \angle CBD + m \angle ABD\\ & = 20^\circ + 20^\circ \\ & = 40^\circ. \end{align}

FLAG

In the figure above, $m \angle CBD = 3x + 5^\circ$ and $m \angle ABD = 6x - 19^\circ.$ If $\angle CBD \cong \angle ABD$, find $m \angle ABC.$

a
$54^\circ$
b
$60^\circ$
c
$58^\circ$
d
$61^\circ$
e
$62^\circ$

In the figure above, $\angle ABC$ is an angle and $D$ is a point in the interior of $\angle ABC$ such that $m \angle CBD = 4x + 3^\circ.$ If $m \angle ABC = 110^\circ$ and $\angle CBD \cong \angle ABD$, find the value of $x.$

a
$17^\circ$
b
$14^\circ$
c
$10^\circ$
d
$13^\circ$
e
$16^\circ$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL