We can use the standard algorithm to add multiple multi-digit whole numbers.

For example, let's use the standard algorithm to compute the following sum:

801 + 523 + 198

First, we line up our numbers:

\begin{array}{cccccccc} & & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! \end{array}

Next, we add the numbers in each place value (from right to left). However, this time, we need to sum three numbers in each place value, as well as any carried digits:

\begin{array}{cccccccc} & \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \!\!\!\! \\ & & \!\!\!\! 8 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 1 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 5 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \\ \hline & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \end{array}

Therefore, 801 + 523 + 198 = 1,522.

FLAG

Lauren is listening to some songs while waiting for a train. The duration of the first song is 123 seconds, the second is 182 seconds, and the third is 157 seconds. What is the total duration of all three songs?

EXPLANATION

To find the total duration of all three tracks, we need to compute the sum

123 + 182 + 157.

First, we line up our numbers:

\begin{array}{cccccccc} & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! \end{array}

Next, we proceed by adding the numbers using the standard algorithm: \begin{array}{cccccccc} & \!\!\!\! \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \!\!\!\! \\ & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \end{array}

So, we have

123 + 182 + 157 = 462.

Therefore, the total duration of all three songs is 462 seconds.

FLAG

$31 + 457 + 99 =$

a
$577$
b
$556$
c
$587$
d
$487$
e
$477$

$425 + 69 + 278 =$

a
$662$
b
$772$
c
$672$
d
$762$
e
$771$

What is 31,252 + 12,892 + 25,034?

EXPLANATION

First, we line up our numbers:

\begin{array}{cccccccc} & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! \end{array}

Next, we proceed by adding the numbers using the standard algorithm:

\begin{array}{cccccccc} & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! \\ & & \!\!\!\! 3 \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 2 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 3 \!\!\!\!& \!\!\!\! 4 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! 6 \!\!\!\!& \!\!\!\! 9 \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\! \end{array}

Therefore,

31,252 + 12,892 + 25,034= 69,178.

FLAG

$9,375 + 15,761+62,791 =$

a
$77,927$
b
$87,727$
c
$87,827$
d
$87,927$
e
$86,927$

In a particular year, Dan drove $13,589 \,\text{mi},$ Brian drove $12,825\,\text{mi},$ and Faby drove $14,029\,\text{mi}.$ How many miles did they drive in total?

a
$41,433 \,\text{mi}$
b
$40,443 \,\text{mi}$
c
$30,343 \,\text{mi}$
d
$31,443 \,\text{mi}$
e
$41,423 \,\text{mi}$

2,078,503 + 148,450 + 1,885,047 =

EXPLANATION

First, we line up our numbers:

\begin{array}{cccccccc} & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\!& \!\!\!\! \!\!\!\! \end{array}

Next, we proceed by adding the numbers using the standard algorithm:

\begin{array}{cccccccc} & \!\!\!\! \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 2 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 2 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \small{ \color{blue} 1 } \!\!\!\!& \!\!\!\! \!\!\!\! \\ & & \!\!\!\! 2 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 7 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 3 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \\ \!\!\!\!+\!\!\!\! & & \!\!\!\! 1 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 8 \!\!\!\!& \!\!\!\! 5 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 7 \!\!\!\! \\ \hline & \!\!\!\! \!\!\!\!& \!\!\!\! 4 \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 1 \!\!\!\!& \!\!\!\! 2 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\!& \!\!\!\! 0 \!\!\!\! \end{array} Therefore,

2,078,503 + 148,450 + 1,885,047 = 4,112,000.

FLAG

$3,592,009 + 267,457 + 2,405,812 =$

a
$6,265,278$
b
$5,255,278$
c
$6,264,268$
d
$6,365,288$
e
$5,265,268$

The area of the USA is $3,796,742\,\textrm{mi}^2,$ the area of Canada is $3,855,100\,\textrm{mi}^2,$ and the area of Mexico is $761,610\,\textrm{mi}^2.$ What is the total area of these three countries?

a
$6,403,452\,\textrm{mi}^2$
b
$8,413,452\,\textrm{mi}^2$
c
$7,413,452\,\textrm{mi}^2$
d
$7,213,452\,\textrm{mi}^2$
e
$8,312,452\,\textrm{mi}^2$
Flag Content
Did you notice an error, or do you simply believe that something could be improved? Please explain below.
SUBMIT
CANCEL